
Access and Use Control using
Externally Controlled Reference Monitors

Stephen D. Wolthusen
Security Technology Department, Fraunhofer-IGD, Darmstadt, Germany

wolt@igd.fhg.de

13th November 2001

1 Introduction

The reference monitor as a structuring mechanism for operating system design were proposed by
Anderson [1] based on earlier work by Schell. It has since been used as a guiding principle for the
design of secure operating systems or in adding security facilities to existing systems, arguably due to
it being a simple yet powerful abstraction, but undoubtedly also with the aid of [17] which mandated
the use of the reference monitor concept for systems conforming to the classes B2 and higher.
The mechanism described in [1] assumed that the processing of information would generally occur
within the confines of a monolithic computer system that facilitated centralized control. Similarly, [17]
provides only minimal considerations for the handling of information exchanged between multiple
instances and then assumes that the sensitivity labeling of all instances obeys a single scheme.
This assumption cannot be maintained in current computing environments. Not only are a consider-
able number of computer systems internetworked even within a single area of control of an organiza-
tion, a single computing device itself can and must be understood as a network of components whose
components and interconnections may be exposed to both active and passive attacks.
Given the security model and policy of an organization or a set of organizations, it has therefore
become necessary to ensure the consistent enforcement of these policies occurs on all components of
the computing environment to which they apply. As has been argued before, this enforcement must
encompass all resources on a given system and thus occur at the level of non-bypassable operating
system mechanisms [8].
We propose a natural extension of the proven reference monitor abstraction that fulfills this require-
ment for distributed environments by externalizing the actual policy definition and distribution into
a redundant network of external reference monitors (ERM) and providing only enforcement mech-
anisms at the level of the actual component systems, controlled by an externally controlled refer-
ence monitor (ECRM) subordinate to ERMs. In addition, the mechanism proposed here can serve
to provide not only access control but also to exert behavioral restrictions and to provide distributed
firewalling and intrusion detection facilities.
This extension could be part of a newly designed system; however, the primary focus here is on
the capability for retrofitting the mechanism into existing operating systems. This implies that the
mechanism must be implementable even for systems where there exists no such local facility.



User Mode

Supervisor Mode(s)

Application Process

Executable File

Shared Object/Library

Macro File

Application Process

Executable File

Shared Object/Library

Macro File

System Service/Daemon

Executable File

Shared Object/Library

Network Enforcement/
Policy Requests

System APIs

Trusted Subsystem

Communication
Policy
Storage

Physical
Resources

Network Protocol Stack

Network Device DriverDisk Device Driver

File System
Enforcement

File System Driver

Audit
Storage

ECRM

I/O Device Driver

I/O
Enforcement

Process Management Process Enforcement

Figure 1: Components in a Controlled System

2 Architecture of Controlled Systems

The following discussion does not assume a pre-existing reference monitor system in the operating
system to be equipped with an externally controlled reference monitor. In systems where this is the
case the necessary alterations and simplifications to the description below should be obvious.
By definition, the reference monitor must be invoked on any access to resources controlled by the
operating system. Examples for such resources are devices, files, memory segments, virtual circuits,
or datagrams. We also assume that any access to resources not occurring in supervisor mode does not
have direct access to the resources and use a well-defined set of entry points to the supervisor mode
environment.
This implies a requirement to mediate each access to the relevant components; figure 1 shows the
process management subsystem, generic I/O subsystem, the file system, and network subsystems as
an example. This is accomplished by interposing a layer between the next-higher layer in the system
hierarchy and the controlled component itself. These layers are referred to as “enforcement modules”
in the following discussion.
The enforcement modules serve several purposes. First, any operation involving the controlled com-
ponent is subject to mediation by the enforcement module which in turn relegates the access request
to the ECRM. This extends to any operation under the control of enforcement modules even if the
base operating system enforces security constraints only on first access. The ECRM can permit the
operation to proceed as requested, or it can instruct the enforcement module to perform additional



operations as preconditions. An example for such a precondition is the use of cryptographic confi-
dentiality and integrity protection. The second main purpose of the enforcement module is to gather
information as instructed by the ECRM that is either a prerequisite for reaching a decision by the
ECRM (i.e. by ERMs) for an operation request (which may be the same enforcement module as the
one issuing the request) or as a result of an active ECRM query into the surrounding system based on
an internal requirement of the ECRM.
The ECRM operates as an agent of one or more ERM dictating the security policies to be applied.
It is contained in a – at least logically – separate trusted subsystem area whose components can be
subjected to a rigorous design, verification, and validation. It also translates to and from a common
format for characterizing operations in a suitable format for submission to ERMs over a communi-
cation channel providing integrity, confidentiality, and mutual authentication between the ECRM and
any ERM contacted.
Assuming that the security policies for the subjects, objects, and operations involved permit this, the
ECRM can act based on policy information that has been temporarily delegated by one or more ERM,
mainly for reasons of performance and scalability.

3 Architecture of External Reference Monitors

The ERM itself is again a trusted subsystem and may also be combined with the mechanisms found
in a controlled host as described above; however, it is generally sufficient to provide an execution
environment for the trusted subsystem and a communication channel which can be controlled by this
subsystem.
An ERM receives policy requests from ECRMs over a protected communication channel. These
request (or hypotheses) are formulated as a 4-tuple(�;
; �; �) where� is a vector of subjects�i and

 is a vector of subjects!i (see section 5.1 for additional properties),� is an operation descriptor
� 2 � where� is the set of well formed operation descriptors, and� is an operation lifetime� 2 �.
For all � there exists a predicateoperation�(�1; : : : ; �i; !1; : : : ; !j) wherei andj depend on�. The
set of valid operation lifetimes� is defined as ordered pairs(�s; �e) where�s and�e are elements of
a set on which an order is defined for which�s � �e holds.
The ERM applies the security policy or security policies which are stored under the control of the
ERM according to the identities of the subjects and objects involved and may yield one or more
replies; this is denoted with the symbolr, i.e. f(�r;
r; �r; �r)kg = r(�;
; �; �). A negative
reply tuple is denoted as(�r;
r; �?; �r). The application of any policy decision on a negative reply
tuple is again the negative reply tuple:8r : r(�r;
r; �?; �r) = (�r;
r; �?; �r). In addition,
the ERM may generate one or more audit events for each request received.
In addition, the ERM may also issue commands to ECRMs; the syntactical constructs involved are the
same as before although different or additional elements compared to those used for handling ECRM
requests may be used. Such commands may include operations performed within the ECRM itself,
but may also include commands which specify operations which affect the system in which the ECRM
is embedded (e.g. termination of network connections, or specific surveillance of certain operations).
To ensure that the semantics of requests and replies are equivalent even if they are issued based on
different platforms it is necessary to use a common set of primitives for the description of subjects,
objects, and the operations to be performed. To ensure consistent application of the policy to subjects
and objects regardless of which node of a distributed system they reside on or are otherwise connected
to, it is also necessary to identify subjects and objects in a way that transcends individual nodes and



ERM

Host Transport Mechanism

High Availability / Load Balancing Mechanism

Policy Repository
Access Subsystem

Policy Data Storage
Access Mechanism

Policy Data Storage
Transaction Manager

Policy Data
Storage

Transport
Protocols

ERM/ERM Protocol

ERM/ECRM Protocol

Audit Data
Storage

Audit/IDS Data
Access Subsystem

Audit Data Storage
Access Mechanism

Audit Data Storage
Transaction Manager

Policy
Derivation/Unification

Engine

Figure 2: ERM Architecture

platforms. The ERM mechanism itself is independent of a specific security policy or model. The
request mechanism ensures that all required information for e.g. access matrix, capability, or domain
and type enforcement systems are transmitted from the ECRM to the ERM in referring a decision on
an operation.
The overall architecture of an ERM is shown in figure 2 on page 4; both the storage and retrieval of
polciy information and of audit information (also of relevance for intrusion detection) is externalized
outside the trusted subsystem since it can be cryptographically protected.

4 Security Policy Mechanism

This section gives a brief outline of a security policy mechanism that can be implemented using the
ECRM mechanism. While not specifically tied to it, it can serve as an illustration and also incorporates
mechanisms necessary to provide interoperability between platforms; details can be found in [20].
The basis for all operations discussed is the use of formal logic, specifically of first order predicate
logic. Subjects and objects in operating systems as well as other objects and meta-objects can be
described as constants of a first order language. Subjects can also be grouped into categories using
predicates such asuser(S)1, process(S), application(S), host(S), network(S), link node(S), or
bus node(S) etc.; objects are similarly grouped by predicates including but not limited to�le(O),

1The use of the serif typeface (e.g.user(S)) indicates meta-variables, sans serif typeface (e.g.user(S)) indicates con-
crete instances (i.e. belonging to a specific interpretation), and fixed font usage (e.g.Process ) indicates symbols belonging
to a specific implementation



data �le(O), executable �le(O), virtual circuit(O), memory segment(O), datagram(O),
physical link(O), andconnection(O).
Individual subjects and objects are identified by means of constants which uniquely represent an entity
throughout a distributed system.
Predicates such aswrite device control(S;O) andreceive ipc(S1; S2; O) indicating permitted oper-
ations are also defined; these represent a common set of abstractions found in operating systems
relevant to control over subject behavior.
For each of these predicates, a definition of the semantics is given and for each of the systems on which
the mechanisms discussed here are to apply, an interpretation of the predicates must be given. Sim-
ilarly, bijective functions must be defined to map the constants against interpretation- and ultimately
implementation-specific entities.
As an example, the definition of the predicatewrite device control(S;O) is:

An interpretation should map this primitive to an operation which transfers informa-
tion under the control of the entity identified by the metavariableS for which the predicate
subject(S) holds to the resource identified by the metavariableO for which the predicate
device(O) holds and which is mutually disjoint with information for which the operation
identified by the predicatewrite device data(S;O) holds.

The corresponding definition for the Microsoft Windows 2000 operating system of the interpretation
write device control(S;O) (which occurs at the level of the partially undocumented executive native
application programming interface [14, 5, 11, 10] to ensure that all calls to the executive are mapped
properly) is:

This primitive is mapped to four native functions. The first function isZwSetEaFile
where the objectO is identified as represented by theFile executive object handle
passed in to theFileHandle parameter which must refer to aDevice executive ob-
ject. The second function isZwSetInformationFile where the objectO is identi-
fied as represented by theFile executive object handle passed in to theFileHandle
parameter which must refer to aDevice executive object. The third function isZwDe-
viceIoControlFile where the identity ofO is provided by the handle to theFile
executive object in the parameterFileHandle and must represent aDevice executive
object. The parameterIoControlCode must contain the flagsFILE WRITEACCESS
or FILE ANYACCESS. The fourth function isZwFsControlFile where the identity
of O is provided by the handle to theFile executive object in the parameterFileHan-
dle and must represent aDevice executive object. The parameterIoControlCode
must contain the flagsFILE WRITEACCESSor FILE ANYACCESS.

The set of predicates, function symbols, and possibly axioms together form a security policy. The the-
ory thus defined must be consistent; intuitively this means that only positive statments are permitted.
A policy request is formulated as a hypothesis in the formal logic and submitted to one or more ERM.
An ERM may then attempt to prove that, based on its policy, the operation is granted. This can
take several forms; in the simplest case a term substitution (which may be identity) can be applied.
Even then, the use of lattices and returning the least upper bound (lub) of elements of the hypothesis
and the policy element can yield a reply that is significantly more powerful than the hypothesis and
which can then be re-used during the operation lifetime by the ECRM without the need for additional



queries. The reply may contain several elements, in that case the ECRM can consult (analogous to the
mechanism described here for the ERM) these replies.
The expressiveness of the logic-based enforcement mechanism becomes relevant if a theorem prover
is applied. This approach permits the use of several abstraction layers with specifications occurring at
the highest feasible abstraction layer in the system and the policy logic deriving behavioral rules for
subordinate abstraction layers. Additional details on this mechanism can be found in [21].
The structure of the hypotheses permit submission to several ERMs, possibly working on the same
policy rule set. If any one of the ERMs return a positive reply, the ECRM can proceed. This permits
the implementation of concurrent resolution with a simple term substitution mechanism and more
elaborate provers. If after a certain resource limit has been reached the theorem prover has not arrived
at a unification, a negative reply is returned; this does not violate security properties.
The application of multiple policies (typically from several ERMs) is denoted asf(�;
; �; �)0kg =
r1Ær2Æ� � �Ærn(�;
; �; �); the set of hypotheses in each application contains the original hypothesis.
As each policy application yields additional hypotheses, the result of the chain of applications depends
on the sequence of policy application at least in the additional hypotheses generated. The consultation
of ERMs by an ECRM must therefore follow a fixed but arbitrary sequence; here we use the hierarchy
defined by the ERM topology (see section 5).
The restriction to positive statements is, while found in other mechanisms as well, an impediment
to natural formulation of rules. However, permitting specifications similar to natural language with
rules and exceptions requires the use of non-monotonic logic. Permitting this would incur significant
performance penalties and would also require a strict order on policies that must be processed in
sequence without exceptions for each case; therefore we believe that the mechanism described here is
an adequate compromise.
In addition to controlling the complexity of policies which must be defined by human security admin-
istrators, the logic-based mechanism fulfills another goal in that it permits specification of platform-
and system-independent security policies. This is achieved since the formal logic requires the pro-
vision of a platform-dependent interpretation representing a model of the theory; by imposing a
soundness constraint on the formal theory used we can guarantee that the policy will be enforced
consistently.
Due to the flexibility and economy of mechanism the same general framework can also be used (sub-
stituting or adding predicates, constants, and functions as appropriate) for additional tasks such as
specifying intrusion detection and data fusion mechanisms. Based on the properties of any first-order
theory it is obvious that it can be used to represent any security model which can be expressed in an
automated procedure.
One example of an augmented policy is the requirement for the mandatory encryption of all�le objects
meeting certain criteria on leaving the domain of control of an ECRM system (e.g. upon writing to
storage media regardless of the mode of attachment).

5 External Reference Monitor Network Topology

As noted above it is necessary to impose an ordering or hierarchy on ERMs to ensure that ECRMs
can obtain idempotent results.
One possible ordering is to use the same directed acyclical graph obtained by the Domain Name Sys-
tem (DNS) mechanism for name resolution. Since the system described here is intended for use in
distributed environments and there is generally a correspondence between organizational specializa-



ECRM

ERM
Authoritative D1

ERM
Authoritative D2

ERM
Authoritative D3

ERM
Slave D1

ERM
Slave D1

ERM
Slave D1,D2

ERM
Slave D2

ERM
nth Level
Slave D1

Caching
Only
ERM

ERM
Authoritative D1

ERM
Slave D1

ERM
Slave D1

ERM
Slave D2

ERM
Authoritative D2

ERM
Authoritative D3

ERM
Slave D3

ERM
Slave D2

ERM
Slave D2

ERM
Slave D3

ERM
Authoritative D1

ERM
Authoritative D2

ERM
Authoritative D3

ERM
Authoritative D1

ERM
Authoritative D2

ERM
Authoritative D3

Figure 3: ERM Hierarchy

tion relations and the paths obtained by DNS names, this represents a workable solution which has the
additional benefit of permitting implicit routing information for ECRMs wishing to contact an ERM,
i.e. there is no need for forwarding requests since the ECRM implicitly knows the destination address
for each request.
Also in analogy to DNS, ERM nodes can harbor and cache several policies; provided that sufficient
trust and assurance exists this can be used to derive responses to requests that would otherwise have
to be posed to other ERMs. Even if the trust required for a caching is not present, it is still possible
to cache responses themselves by archiving the cryptographically protected tuples consisting of a
hypothesis and the replies within the lifetime of the reply. The layout with several possible request
paths is shown in figure 3 on page 7.

5.1 Type and Identity for Subjects and Objects

As described above, a subject is a constant denoted as�. For each subject�i, there exist suitable
constantsCT

�i ,CI
�i and two predicatessubject type(�i; CT

�i) andsubject identity(�i; CI
�i) and such

that an individual subject is uniquely identified bysubject type(�i; CT
�i)^subject identity(�

i; CI
�i).

Similarly, an object is a constant denoted as!. For each object!i, there exist suitable constantsCT
!i ,

CI
!i and two predicatesobject type(!i; CT

!i) andobject identity(!i; CI
!i) such that an individual

object is uniquely identified byobject type(!i; CT
!i) ^ object identity(!i; CI

!i). The set of all ob-
jects is denoted as
, that of all subjects�.
Each subject� is embedded in a latticeLI

� imposed bysubject subset identity on�. For all �i

there is a constantC and a predicatesubject subset identity(�i; C) such thatC is an element of



LI
� which contains�i. The function symbolSubject subset identity(A;B) yields the lub of the

elements ofLI
�. Similarly, each object! is embedded in a latticeLT

! imposed byobject subset type
on
. For all!i there is a constantC and a predicateobject subset type(!i; C) such thatC is an
element ofLT

! which contains!i. The function symbolObject subset type(A;B) yields the lub of
the elements ofLT

! . In both cases the lattice is conveniently constructed by the power setP(S) and
P(O), ordered by set inclusion.
This construction permits both the unique identification of subjects and objects across node and plat-
form boundaries (assuming the corresponding mappings for the interpretations) and the specification
of security policy rules on hierarchies of objects that lend themselves well to simple and efficient term
substitution. Policy rules can affect individual objects or sets of objects identified by the respective
lub of the set.
When aligned with the ERM topology and with the implicit definition of a dominance relation within
the directed acyclical graph thus generated, this also permits the authentication of policy replies by
following a chain of authentication elements (e.g. public key certificates).

6 Implementation Issues

The following section gives a brief overview of the issues involved in implementing an external refer-
ence monitor system; some of the design decisions are, as noted above, arbitrary and do not constitute
an integral part of the ERM/ECRM mechanism.

6.1 External Reference Monitor

The ERM consists of a trusted subsystem which communicates with the outside world in the form of
IPSec-authenticated messages. These messages are transmitted as UDP datagrams to ensure that –
once a key exchange has occurred within a given timeframe – no extraneous transmissions increase
the latency incurred by a request. UDP limits the maximum message size; however, this is not an issue
since messages are considerably smaller than that. In addition, UDP is a best effort protocol. This is
also no hindrance since the policy requests are idempotent and a request may either be repeated after
a certain time has expired or be sent to several servers known to hold the required policy information.
For this purpose the host IPSec implementation could be used; however, since it is desirable to exert
a higher level of control over the permissibility of accepting packets (e.g. to avoid denial of service
situations) and to have direct control over key management and exchange, a custom implementation
is called for. On a System V Release 4 system, this is accomplished by using a STREAMS module
inserted into the stream for the desired network interface; on a Microsoft Windows NT system this
can occur by replacing all NDIS drivers with wrapper drivers that interpose themselves between the
proper NDIS driver and the NDIS library2.
The trusted subsystem proper (which is mainly concerned with deriving policy decisions, issuing
commands to ECRMs, and performing audit data requests and replies) can be embedded into a cryp-
tographic coprocessor and communicate with the host environment (including the ECRMs and other
ERMs by extension) only using cryptographically protected messages. The integrity and confidential-
ity of hypotheses and replies are protected by a separate cryptographic protocol beyond the scope of

2The use of NDIS intermediate drivers would be desirable but is not feasible since the NDIS architecture permits by-
passing of NDIS intermediate drivers. In any case, we do not anticipate the implementation of ERM on the Windows NT
platform



this discussion; similarly, the ERM trusted subsystem must store and retrieve audit information and
policy data from storage subsystems; these must also be protected by cryptographic means even if
cryptographic coprocessors are employed since both can be of arbitrary size. Use of cryptographic
means reduces the threat to policy and audit data to truncation unless the trusted subsystem is com-
promised.

6.2 Controlled Systems

The bulk of the implementation effort is required for ECRM embedding. This is particularly true
in the case of the Windows NT (2000) operating system platform since the relevant interfaces are
not all documented and source code is not generally available for review3. The following discussion
concentrates on some aspects the Windows NT platform since comparably little literature exists in
this area. It should be noted that all augmentations outlined here can be performed without access to
source code by use of various device drivers and replacement of kernel dynamic libraries.
While Windows NT uses a reference monitor concept, this mechanism is applied only on first access;
subsequent access is not verified. To achieve the possibility for controlling any operation on resources,
interception points must be inserted at various points. The most prominent such location is the Object
Manager. Intercepting any access to this component yields important information for later collation
with outer information from different components.
Additional interception points are required within the network layer; as in the case of the ERM noted
above this requires the insertion of a NDIS wrapper into the network stack. This location on one hand
ensures that only well-formed data meeting the requirements of all active security policies and being
within the limits imposed by the robustness of the host network stack are forwarded to the remainder
of the operating system and vice versa and on the other hand permits the issuing and receiving of
hypotheses and requests from ERMs without recursion and deadlock within a host operating system
network stack.
An essential part is in the interception of the file system. The Windows NT operating system family
permits the insertion of both high-level file system filter drivers as well as interception points at lower
levels in the storage hierarchy[10]. High-level interception is of particular interest since it permits the
embedding of additional semantics such as labeling for the identification of objects and transparent
encryption and decryption for all file systems supported including both local and remote file systems.
In conjunction with the object manager and controls over processes and the network interface this
also permits constructs such as predicates permitting applications (as identified by a collection of
executable resources from the file systems and a process) network access depending on the history of
resources accessed previously by such a process. Details on this mechanism can be found in [22].
A final example for an interception point is the control over the printing subsystem. Some security
policies may impose restrictions on hard copy output or the emplacement of sensitivity labels or the
identity of the subject (user or system process) initiating a print job. By replacing a choke point
component of the printing subsystem of the Windows NT family it is possible to accomplish this
irrespective of the type of printer or printer driver used. Details on this mechanism can be found in
[23].
As described in [21], this mechanism can be extended arbitrarily and can be layered in terms of
abstraction layers covered by the interception points; the mechanisms discussed here are not sufficient
to achieve full coverage.

3While source code can be obtained, intellectual property concerns dictated the use of other means



At least some of the mechanisms (e.g. policy derivation, audit trail generation, intrusion detection
analysis, and auxiliary functions such as object en-/decryption) can be embedded in a cryptographic
coprocessor. The interface to this coprocessor must as narrow as possible and permit well-defined
communication exclusively under the control of the trusted subsystem. This is not always the case
as was recently demonstrated [3]. If, however, the environmental considerations are also taken into
account, the use of cryptographic coprocessors can significantly enhance both robustness against tam-
pering and performance of the system provided that the considerable cost incurred by the use of such
devices can be justified.

7 Related Work

The ECRM concept can be seen as a logical next step beyond the Network Reference Monitor intro-
duced by Anderson [2].
Early work on segregating policy decisions from enforcement was performed at UCLA [18] and also
in the LOCK project [12, 13]. The DTOS project also dealt with this concept [9] based on a Mach
microkernel architecture.
The generally promising approach to the issue of improving assurance by means of a microkernel and
enforcing security at critical component junctions is pursued by work on the Flask security architec-
ture [15] based on the Fluke operating system architecture [6] and earlier work on DTOS; some of the
more recent work of that group is focused on bringing the concepts of Fluke to the Linux kernel. The
basic concept of externalizing policy temporarily decisions can also found there [4], although policy
delegation and performing caching in trusted subsystems has apparently not been pursued, although
the problems were recognized [9]. Similarly, enforcement of security in this system requires a homo-
geneous environment; using encryption as an enforcement tool addresses this issue to some extent.
DTOS is also of interest in that it was designed with policy flexibility, although policy composition
was not considered.
Several applications for secure coprocessors have been part of the LOCK project and also proposed by
Tygar and Yee [16] as well as White [19] including use of encryption of critical features for enforcing
software rental agreements; this can be considered similar to the access and use control by ECRM of
described proposed here.
In contrast to these mechanisms as well as to [7], the mechanisms outlined above permit the specifi-
cation of behavioral controls if so desired without requiring the detailed level of specification.

8 Conclusion

This paper has presented a mechanism for the specification and enforcement of an arbitrary set of
security policies for access, use, and behavioral control on an extensible set of subjects, objects, and
operations. The use of formal logic for the derivation of policy statements from either hypotheses
posed by externally controlled reference monitors in response to an attempted operation or previ-
ously issued commands or from other policy statements permits a layering of abstraction models that
alleviates the complexity problems faced in the specification of security policies.
By being independent of a specific operating system — and specifically, by being able to provide
security as an add-on mechanism to widespread COTS systems such as Microsoft Windows 2000
and System V Release 4 Unix derivatives such as Sun Solaris without affecting application programs
– and mapping the semantics onto system-specific constructs, a broad coverage essential for use in



distributed systems is achieved. The simultaneous application of multiple policies for subjects and
objects involved also permits the modeling of complex interrelationships between entities of different
organizations. The use of of cryptographic coprocessors for both controlling (ERM) and controlled
(ECRM) instances particularly permits the distribution of caching ERM instances without a trust
relationship being necessarily involved, providing the foundation for a high degree of scalability.
Results obtained so far indicate that the overhead required for ECRM/ERM communication are barely
noticeable in a LAN environment for regular office productivity applications even in cases where each
individual file access operation requires separate communication; this represents a rather pathological
situation.

References

[1] A NDERSON, J. P. Computer Security Technology Planning Study. Tech. Rep. ESD-TR-73-51,
Air Force Electronic Systems Division (AFSC), L. G. Hanscom Field, Bedford, MA, Oct. 1972.
AD-758 206, ESD/AFSC.

[2] A NDERSON, J. P. A Unification of Computer and Network Security Concepts. InProc. IEEE
Symposium on Security and Privacy(1985), pp. 77–87.

[3] BOND, M. Attacks on Cryptoprocessor Transaction Sets. InCryptographic Hardware and
Embedded Systems – CHES 2001. Proceedings of the Third International Workshop, May 14–16
2001, Paris, France(Heidelberg, Germany, May 2001), C¸ . Koç, D. Naccache, and C. Paar, Eds.,
vol. 2162 ofLecture Notes in Computer Science, Springer Verlag, pp. 220–234.

[4] CHITTURI, A. Implementing mandatory network security in a policy-flexible system. Master’s
thesis, Department of Computer Science, University of Utah, Salt Lake City, June 1998.

[5] CUSTER, H. Inside Microsoft Windows NT File System. Microsoft Press, Redmond, WA, USA,
1994.

[6] FORD, B., HIBLER, M., LEPREAU, J., MCGRATH, R., AND TULLMANN , P. Interface and
execution models in the fluke kernel. InProceedings of the 3rd Symposium on Operating Systans
Design and Implementation (OSDI-99)(Berkeley, CA, Feb. 22–25 1999), Usenix Association,
pp. 101–116.

[7] FRASER, T., BADGER, L., AND FELDMAN , M. Hardening COTS Software with Generic Soft-
ware Wrappers. InProceedings of the 1999 Conference on Security and Privacy (S & P ’99)
(Los Alamitos, CA, May 9–12 1999), IEEE Press, pp. 2–16.

[8] L OSCOCCO, P. A., SMALLEY, S. D., MUCKELBAUER, P. A., TAYLOR, R. C., TURNER,
S. J.,AND FARRELL, J. F. The Inevitability of Failure: The Flawed Assumption of Security
in Modern Computing Environments. InProceedings of the 21st National Information Systems
Security Conference(1998), National Computer Security Center, pp. 303–314.

[9] M INEAR, S. E. Providing policy control over object operations in a Mach based system. In5th
USENIX UNIX Security Symposium, June 5–7, 1995. Salt Lake City, UT(Berkeley, CA, USA,
June 1995), USENIX, Ed., USENIX, pp. 141–155.



[10] NAGAR, R. Windows NT File System Internals. O’Reilly & Associates, Sebastopol, CA, USA,
1997.

[11] NEBBETT, G. Windows NT/2000 Native API Reference. Macmillan Technical Publishing, Indi-
anapolis, IN, USA, 2000.

[12] SAYDJARI, O. S., BECKMAN, J. M., AND LEAMAN , J. R. LOCK trek: Navigating uncharted
space. InProc. IEEE Symposium on Security and Privacy(1989), pp. 167–175.

[13] SMITH , R. E. Cost Profile of a Highly Assured, Secure Generating System.ACM Transactions
on Information and System Security 4, 1 (Feb. 2001), 72–101.

[14] SOLOMON, D. A., AND RUSSINOVICH, M. E. Inside Microsoft Windows 2000, 3rd ed. Mi-
crosoft Press, Redmond, WA, USA, 2000.

[15] SPENCER, R., SMALLEY, S., LOSCOCCO, P., HIBLER, M., ANDERSEN, D., AND LEPREAU,
J. The Flask security architecture: System support for diverse security policies. In8th USENIX
Security Symposium(Washington, D.C., USA, Aug. 1999), USENIX, pp. 123–139.

[16] TYGAR, J. D.,AND YEE, B. Dyad: a system using physically secure coprocessors. InTechno-
logical Strategies for Protecting Intellectual Property in the Networked Multimedia Environment
(MIT, Program on Digital Open High-Resolution Systems, Jan. 1994), The Journal of the Inter-
active Multimedia Association Intellectual Property Project, Coalition for Networked Informa-
tion, Interactive Multimedia Association, John F. Kennedy School of Government, pp. 121–152.

[17] UNITED STATES DEPARTMENT OF DEFENSE. DoD 5200.28-STD: Department of Defense
(DoD) Trusted Computer System Evaluation Criteria (TCSEC), 1985.

[18] WALKER, B. J., KEMMERER, R. A., AND POPEK, G. J. Specification and Verification of the
UCLA Unix Security Kernel. InProceedings of the 7th ACM Symposium on Operating Systems
Principles (SOSP)(1979), pp. 64–65.

[19] WHITE, S. R.,AND COMERFORD, L. ABYSS: A trusted architecture for software protection.
In Proc. IEEE Symposium on Security and Privacy(1987), pp. 38–52.

[20] WOLTHUSEN, S. Formal Logic for Security Policy Definition and Enforcement. Under prepa-
ration., 2001.

[21] WOLTHUSEN, S. Layered multipoint network defense and security policy enforcement. InPro-
ceedings from the Second Annual IEEE SMC Information Assurance Workshop, United States
Military Academy, West Point, NY(June 2001), pp. 100–108.

[22] WOLTHUSEN, S. Security Policy Enforcement at the File System Level in the Windows NT Op-
erating System Family. InProceedings 17th Annual Computer Security Applications Conference
(ACSAC’01), New Orleans, LA(Dec. 2001). To appear.

[23] WOLTHUSEN, S. Sensitivity Labels and Invisible Identification Markings in Human-Readable
Output. InProceedings of Electronic Imaging 2002, San Jose, CA(Jan. 2002), The International
Society for Optical Engineering (SPIE). To appear.


