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Abstract

The commonly used flaw hypothesis model (FHM) for
performing penetration tests provides only limited, high-
level guidance for the derivation of actual penetration at-
tempts. In this paper, a mechanism for the systematic
modeling, simulation, and exploitation of complex multi-
stage and multi-agent vulnerabilities in networked and dis-
tributed systems based on stochastic and interval-timed col-
ored Petri nets is described and analyzed through case stud-
ies elucidating several properties of Petri net variants and
their suitability to modeling this type of attack.

1 Introduction

The design and deployment of large-scale internet-
worked systems such as multi-tier database and electronic
commerce systems, particularly when consisting of a large
number of independent off-the-shelf components rarely
proceeds from a precise specification or model of system
behavior. In addition to vulnerabilities in individual com-
ponents of such systems, however, this can also result in
vulnerabilities that result from interactions among system
components that include not only the off-the-shelf elements
but also customized program elements and emergent prop-
erties such as timing and load behavior that can arise only
in certain hardware and software configurations.

While basic configuration errors and implementation
flaws in individual components such as host operating sys-
tems and network components can be identified both lo-
cally through debuggers, in-circuit emulators, custom de-
vice drivers and proxies and in part also remotely using au-
tomated tools such as fuzzers, port scanners, and network
sniffers as well as tool suites such as Nessus [3], Metasploit,
and Core Impact based on research and knowledge about
such relatively standardized components, there are obvious

limits to re-using such common attack scenarios for large
composite systems that may well be unique.

Given the above, the problem of assurance for larger sys-
tems for which no formal specification and proof of security
models and implementations existed [11, 10] has mainly
been approached through custom penetration test exercises,
i.e. by attempting to demonstrate the identification of flaws
that could be found with a fixed but arbitrary work factor by
skilled individuals [17, 20]. However, such testing clearly
neither demonstrates the absence of critical defects or vul-
nerabilities nor does it necessarily even provide a satisfac-
tory predictive value for the work factor of an (unknown)
adversary, as is amply demonstrated by continuous discov-
ery of vulnerabilities in off-the shelf components such as
standard operating systems.

In addition to the issue of overall complexity of large in-
formation systems, application systems – particularly those
exposed to clients – provide multiple potential vulnerabil-
ity areas [9, 30]. Not only do such systems by definition
also provide access paths to adversaries, but such systems
are typically customized from off-the-shelf components or
contain elements of customization or site-specific compo-
nents. Moreover, unlike vulnerabilities in operating sys-
tems or other standard application programs, vulnerabilities
in application systems can often be associated with quantifi-
able monetary risks (e.g. through embezzlement, pilferage,
or by denial of service leading to losses in revenue and rep-
utation), leading to increased interest in penetration testing
and securing application systems. However, as is frequently
the case in the absence of codified scientific or engineering
practices and doctrine, this type of penetration testing has
mainly been characterized as an art [9]. In this paper we ar-
gue that the modeling and analysis of expected and desired
system behavior, in parallel with the modeling and analysis
of complex multistage attacks can be performed effectively
within a framework provided by Petri nets, which has been
demonstrated to scale to very large environments.



It should be noted that Petri nets, particularly the variants
discussed in this paper, are suited to both the modeling of
desired or required system behavior and its limitations and
also to the modeling, simulation, and ultimately execution
of attacks as well. Unfortunately, the information flowing
into these two types of models are somewhat disparate and
it is not immediately possible to derive usable attack mod-
els from system models and vice versa in the general case.
Therefore, the focus of this paper is solely on the perspec-
tive of attack modeling.

To this end, section 2 briefly reviews the background
of pertinent Petri net variants, while section 3 provides an
overview of penetration testing models currently in use as
well as the positioning of Petri net-based attack models
within a variant on a commonly found generic penetration
testing methodology. Section 4 reviews two case studies
applying colored and interval timed colored Petri nets for
modeling, simulation, and execution of attack scenarios.
Subsequently, section 5 briefly reviews related work in the
area of complex attack modeling, and section 6 provides an
outlook on ongoing and future research.

2 Petri Nets and Interval Timed Colored
Petri Nets

Petri nets were originally introduced as a modeling tech-
nique for concurrent systems and provide a rich and graph-
ically intuitive approach for modeling, simulation, and exe-
cution [24, 23, 25].

Elementary Petri nets can be considered as bipartite
graphs with distinct node types that consist of vertices
(places and transitions) and edges (arcs) connecting these.
Arcs are further subdivided into input arcs, which connect
places with transitions and output arcs, which start at a tran-
sition and end at a place. Places can contain tokens; the cur-
rent state of the modeled system (referred to as a marking)
is given by the number and type of tokens in each place.
Transitions model activities through firing when enabled
and thereby inducing changes in the marking. Several types
of Petri nets can be distinguished by the level of informa-
tion associated with individual tokens which can range from
simple boolean information to structured tokens.

Colored Petri nets provide structured tokens in the form
of so-called colors and provide a significant increase in the
expressiveness and compactness of models [14, 15, 15]. To
support time-dependent environments such as real-time sys-
tems or multi-agent interactions such as those considered in
this paper, a number of extensions to both general Petri nets
and colored Petri nets have been proposed, including time
interval colored Petri nets [14] and stochastic colored Petri
nets [37].

Interval timed colored Petri nets (ITCPN) were intro-
duced by van der Aalst [31] and subsequently applied in

a number of areas, particularly in real-time control systems
[32]. In this model, time stamps are associated with tokens
in addition to the token color and the firing delay of tran-
sitions is specified by bounded time intervals, providing a
mechanism to model uncertainty and nondeterminism in in-
dividual transitions that cannot be captured adequately in
models providing deterministic delay models. Formally, an
ITCPN can be defined as follows:

Definition 1 An ITCPN is a 5-tuple (Σ, P, T, C, F) such
that

1. Σ is a finite set of types; the types in Σ are also referred
to as colors, where multiple colors can be associated
with a given type.

2. P is a finite set of places, and
3. T is a finite set of transitions such that P ∩ T = ∅.
4. C is a color function C : P �→ Σ,
5. CT = {(p, v) | p ∈ P ∧ v ∈ C(p)} is the set of all

possible colored tokens, and
6. F is the transition function such that given a time set

TS = {x ∈ R | x ≥ 0} and the set of all closed
intervals INT = {[y, z] ∈ TS×TS | y ≤ z}, the multiset
(denoted by the superscript X◦) of consumed tokens
and the multiset of produced tokens for a transition t is
mapped by F(t):

F : CT◦ �→ (CT × INT)◦

dom F(t) is the condition under which a given transi-
tion t ∈ T is enabled.

The following definition provides a rudimentary descrip-
tion of the dynamic semantics of ITCPN:

Definition 2 The state of a ITCPN (Σ, P, T, C, F) is de-
fined as a multiset of colored tokens, such that the state
space is

S = (CT × TS)◦.

The marking of an ITCPN in state s ∈ S is the token
distribution M(s) ∈ CT◦ such that

M(s) =
∑

〈〈p,v〉,x〉∈CT×TS

s(〈〈p, v〉, x〉)〈p, v〉

.
An event in an ITCPN is a 3-tuple 〈t, bin, bout〉 represent-

ing the firing of transition t, removal of tokens in bin and
addition of tokens in bout where the event set E is given as

E = T × (CT × TS)◦ × (CT × TS)◦

.
A relation on tokens b � b′ is defined as



b � b′ ⇔




b = ∅ ∧ b′ = ∅ or
∃〈〈p, v〉x〉 ∈ b ∃〈〈p, v〉[y, z]〉 ∈ b′ •
(x ∈ [y, z]) ∧
(b − 〈〈p, v〉x〉) � (b′ − 〈〈p, v〉[y, z]〉)

An event 〈t, bin, bout〉 ∈ E is enabled in a state s ∈ S if
and only if the following conditions are met:

1. bin ≤ s,

2. M(bin) ∈ dom F(t), and

3. bout � F(t)(M(bin))

It should be noted that a token residing in a given place
p ∈ P must have a value v such that v ∈ C(p), i.e. a token
color must match one of the place colors. For a detailed
description of the dynamic behavior model of ITCPN refer
to [31].

ITCPN uses the simplified assumption of a single global
time and point-value time representations, which is not en-
tirely appropriate for distributed systems where such cannot
be determined. However, for the purposes of modeling de-
scribed in this paper, the interval time properties provide
sufficient abstraction even for multi-agent attack environ-
ments when used in simulation. Both this simplification and
the semantics for ITCPN described in this sections imply a
limited suitability for analytical purposes such as exhaustive
reachability graphs; this would require a severe restriction
in the supported semantics [31]. However, as the main pur-
pose of the mechanisms described in this paper lie in the
simulation and execution of generated models, the simplic-
ity and effectiveness of the semantics described here appear
to outweigh this drawback.

3 Penetration Testing Models

While ad-hoc mechanisms for identifying flaws and ex-
ploiting such flaws in attacks or penetration tests are still
prevalent, some of the earliest results in the area of pen-
etration testing introduced a structured approach that was
also used in practice early on, with a primary focus on op-
erating system penetration testing [34, 20, 8, 7]. The Flaw
Hypothesis Model (FHM) by Linde and Weissman has been
refined since [35, 2, 36] and is widely used as a mechanism
for structuring penetration-type testing, primarily in the area
of certification and accreditation. It consists of four interre-
lated and iterative stages:

1. Flaw generation: Generation of hypothetical or sus-
pected flaws in the system under test.

2. Flaw confirmation: Classification of flaw hypotheses
as true, false, or untested.

3. Flaw generalization: Attempt at identifying common
underlying weaknesses from confirmed flaws and gen-
eralization into flaw classes.

4. Flaw elimination: Removal or mitigation of flaws
through external controls.

The steps in the FHM are solely based on heuristics and
do not lend themselves to automation to a significant extent.
In particular, the flaw generation step is confined to perusal
of all documentation and source code available (depending
on whether a red-team or blue-team penetration test is in-
tended) and informal techniques for the creation of attack
or flaw scenarios.

An alternate methodology, based largely on fault tree
analysis, originally developed for systems analysis by Bell
Telephone Laboratories for use on the Minuteman strate-
gic missile system [19], is the use of tree-based mecha-
nisms [26, 27]. This methodology, similar to FHM, pro-
vides a mechanism for structuring and guiding an informal
and heuristic-based approach to the identification and con-
firmation of flaws and attack scenarios.

McDermott proposed the use of simple disjunctive Petri
nets as a mechanism for structuring the penetration test-
ing process, called attack nets [22]. Attack nets represent
larger-scale states of the system under attack as places and
model operations such as events and data flows as transi-
tions within the attack net with multiple tokens represent-
ing the steps an attacker must take in order to achieve his
objective (e.g. control over the system under attack). In this
model, the constraints on transitions provide the requisite
coordination in case multiple tokens are required for a given
action.

This mechanism provides testers with the ability to
model

• concurrency and attack progress in the form of tokens
• intermediate and final objectives as places, and
• commands or inputs as transitions.

As noted by McDermott, the attack net mechanism is not
intended to model actual behavior of attackers and does not
provide the requisite level of detail that would be necessary
for such a process.

3.1 Interval Timed Colored Petri Nets

We argue that the attack net model can be further refined
to address the challenges of identifying several classes of
flaws in penetration testing that cannot be identified with
justifiable effort using the previously described informal
heuristics.

To this end, we extend the attack net mechanism by Mc-
Dermott to provide a level of detail sufficient for the simu-
lation and execution of attacks as part of an overall method-



ology such as the flaw hypothesis methodology. This mech-
anism is, however, not intended to supplant the larger, holis-
tic methodologies such as the FHM, Attack Trees, or related
approaches such as the InfoSec Assessment Methodology
as defined by the U.S. National Security Agency.

One of the key benefits of Petri nets in addition to their
graphical nature and hence their appeal to visual compre-
hension and to some extent intuition is that well-defined se-
mantics exist for Petri nets which permit the seamless inte-
gration of modeling, simulation, and execution. It is partic-
ularly in the latter two elements that the results reported in
this paper extend the approach found in [22]. Based on the
overall methodical framework of the FHM, Petri nets and
particularly ITCPN can be used for the stepwise refinement
in the identification, exploration, and analysis of attacks and
flaws within information systems.

In the basic case, Petri nets (not necessarily with time
components) can be used to structure attack elements, in-
cluding documenting the need for concurrent actions, reac-
tions by the system under attack and its operators, and the
codification of preconditions for attack steps to proceed; in
this, even basic binary Petri nets provide a mechanism for
effectively modeling of multi-agent attacks and the interac-
tions between multiple attacking agents and defenders.

This mechanism can subsequently be refined consider-
ably by using colored Petri nets (CPN) for including details
on the attack steps to be conducted; the context provided by
the token color as well as other annotations provides suf-
ficient information to permit both the simulation and, more
importantly, a direct mapping onto an execution element for
an attack.

The execution mechanism itself can e.g. be constituted
by a Nessus module or custom-written code element. How-
ever, the general framework for sequencing the attack com-
ponents and providing information gained in the course of
the attack to other components is retained within the gen-
eral CPN simulation tool. This provides a significant benefit
both in the structure and the reusability of individual attack
elements.

Moreover, the Petri net mechanism lends itself well to a
hierarchical structuring of attacks as well as the factoring
and parameterization of attack components for reuse. If a
sufficient level of detail is provided, a CPN model can also
be used for a direct reachability analysis for certain classes
and vulnerabilities, thereby automating at least in part one
of the steps that is typically based on heuristics within the
FHM. However, both the computational complexity of such
reachability analyses and the level of detail required for the
creation of a CPN model suitable for such analysis clearly
delineate the limits of the approach [16].

The class of attacks this paper is primarily concerned
with, however, is not immediately amenable to reachability
analysis. Timing-dependent attacks, particularly executed

by multiple agents in a networked environment and typi-
cally also executed against multiple targets or networked
components of a target system constitute a large class of
attacks that are promising to attackers since some of the
fault conditions that render such systems susceptible to at-
tacks are difficult to eliminate through static analysis and
software engineering practices and may in some cases be
ephemeral properties of system configurations that were not
anticipated by system designers even if such systems were
designed with due diligence. Examples of relevant classes
include TOCTOU (time of check to time of use) attacks,
race conditions and resource contention attacks.

While such vulnerabilities are frequently identified and
both exploited and corrected for local systems (e.g. in case
of temporary file or lock creation), they are significantly
mode difficult to identify in distributed environments where
network latency and load conditions can provide signifi-
cant distortions in the timing and even sequencing of events
and actions relevant for the successful conclusion of an at-
tack. Attackers therefore are forced to rely mainly on brute
force type approaches to identify vulnerabilities even if suf-
ficient knowledge of the system under attack such as com-
ponent source code is available. This, in combination with
the effort required to construct multiple-agent type attacks
has presumably limited the success in identifying signifi-
cant numbers of vulnerable systems and configurations.

Moreover, since the systems exhibiting this type of
timing-based vulnerabilities are frequently exposed to pub-
lic networks and must let application network traffic pass
through network defense mechanisms (e.g. in case of web
services or electronic commerce sites), threat mitigation
strategies such as limiting network traffic is ineffective if the
attack can be framed in terms of legitimate or legitimate-
appearing traffic following application semantics. In ad-
dition, the systems susceptible to these timing-based at-
tacks are also typically custom-built with significant con-
figurations and custom software added to underlying stan-
dard components such as web servers, databases, and pro-
gramming environments, therefore making the elimination
of this class of attack through generic defect or threat re-
moval becomes exceedingly difficult.

The addition of time intervals to the model of transitions
and events in Petri networks in the form of ITCPN provides
a simple, elegant, and powerful mechanism to model such
timing relations, even in the presence of uncertainty over
the precise nature of the relation (as may be the case even
when performing full white-box penetration testing).

While the ability to perform static reachability analysis
on larger-scale systems is even more limited than in the case
of CPN without timing elements [28], the interval timed net
nevertheless provides a natural mechanism for both simu-
lation and execution of the time intervals through the sam-
pling of the time intervals (which may be further supple-



mented by approaches and semantics commonly found in
stochastic Petri nets [21]). It should be noted that while the
Petri net framework provides partial automation of such at-
tacks, it is still necessary particularly for larger networks
to guide the simulation and execution using heuristics since
exhaustive sampling of all permutations even over a suit-
ably constrained partial reachability tree may well exceed
the time available even for automated penetration testing.
Nevertheless, the benefits of automation in conjunction with
the use of the general Petri net modeling tool framework for
reusability and refinement of attack models including hier-
archical models at different levels of detail in modeling pre-
viously mentioned provide significant benefits over the de
novo creation of attack scripts.

4 Scenarios

The following section demonstrates the types of attack
scenarios of primary interest for this methodology in the
form of case studies, beginning with an elementary net.

4.1 Consistency of Condition Checks

The class of Time-of-Check-to-Time-Of-Use (TOC-
TOU) vulnerabilities provides a large number of opportu-
nities for attackers not only for operating systems but par-
ticularly also in case of application systems. While such
attacks can occur in case of logical flaws, the more com-
mon root cause is a race condition (see also section 4.2). In
the latter case, timing becomes relevant. The most common
way of exploiting such vulnerabilities, particularly for local
exploits, is to automate an attack and run it multiple times
in a brute force approach, adjusting timing to hit just the
right interleaving of operations. On the UNIX platform, the
canonical example of application TOCTOU vulnerabilities
are symbolic link attacks. A TOCTOU vulnerability in a
program running EUID1 of another user, preferably root,
for the duration of the race condition.

The following penetration test study show how we can
use TCPN to model such an attack. This case is based on a
historical case of a TOCTOU vulnerability of passwd(1),
described by Bishop and Dilger in [4]. Precondition for the
attack is a penetration tester with local, nonprivileged shell
access. The underlying flaw hypothesis here is the ability to
masquerade as another user in the system. Investigating the
flawed program, passwd, the following steps can be either
deduced or hypothesized:

1. Open password file, read it, retrieve the entry for the
running user

1Effective User Identification, e.g. the passwd process runs with the
real UID of attacker and effective UID of root so it will be able to
access /etc/passwd and change password for user attacker.

2. Create and open a temporary file (called ptmp) in the
same directory as the password file.

3. Open password file, copy contents into ptmp, update
modified information.

4. Close password file and ptmp, then rename ptmp to
be the password file.

Without the ability to halt passwd between each step,
a timed attack model becomes relevant. Modeling the
passwd steps (transitions) in a colored Petri net is straight-
forward, see the right of figure 1 on page 8.

The attacker must do some initial preparation to exploit
the vulnerability:

1. Create a password directory.

2. Create a .rhost file in that directory.

3. Insert login credentials into .rhost

4. Make a symbolic link that links to the password direc-
tory.

These steps are just done for preparation and can be mod-
eled as one transition in the colored Petri net, with two con-
junctive places as input, which is the fake login credentials
and shell access to the computer.

There are two color sets in the TCPN which are timed,
Attack and Process. The symbolic link state are rep-
resented through the color set Attack, while the system
state is represented by the color set Process. For illustra-
tive purposes, a simplified assumption of the net in figure 1
is that each transition or step in the passwd process con-
sumes the same amount of CPU time. The actions of the
attacker are then modeled as a parallel net within the same
time window.

The TOCTOU or symbolic link attack starts by start-
ing the passwd process on the link to the attackers pwd
directory. Then when the process action has a token
with the color UserEntry at the place user entry
read the attacker must change the symbolic link to
point to the target directory. Since the net are timed
the token colored UserEntry will have a time stamp
of 2 and the token colored LinkToPwd at the place
attacker must change link have a time stamp
of 1. This happens because the input arc of the place
attacker must change link adds 1 time unit and
the transition open password file read entry
for running user uses 2 time units. The differences
in time stamps imply that the token with lowest time stamp
will fire first, thus the transition delete link create
new link will be enabled first. This is how the TCPN
continues, the model remains at a specific time until no
more transitions are enabled at the current model time. The
model time increases as the tokens change time stamp. The



attacker must change the symbolic link between every tran-
sition in the passwd process. This attack will end when
the model time has reached 7. Then the passwd process is
finished and the attacker has successfully changed the target
users .rhost file.

This local penetration testing exercise demonstrate the
possibilities and limitations of modeling timed attacks us-
ing TCPNs. The complexity of such attacks done manually
can become difficult to control if several conditions must
be true at any one time, as can be seen clearly in the at-
tack described here, even though only two main concurrent
processes were present. Other, similar attacks may have
three or more concurrent processes, e.g. attacker actions, a
process that writes to a file, and another that reads the file.
Modeling such attacks in a TCPN helps the penetration test
to become successful without too many manual and time-
consuming operations and interventions. A problem, how-
ever, is obvious when vulnerabilities like this appear in a
distributed environment, i.e. not on a single computer where
one may use or at least model using a single global time.
For distributed systems, there not only is no such global
time (at most a partial order), but also a number of varia-
tions owing e.g. to load and latency conditions within the
distributed system. In such an environment, TCPN are in-
adequate since one must take the uncertainties immanent in
the model into account both for the modeling and the simu-
lation/execution stages.

The following section therefore briefly demonstrates the
use of interval-timed colored Petri nets.

4.2 Race Condition Attack

Race conditions, particularly in application systems con-
structed in the form of multi-tiered architectures, are both
common and difficult to exploit remotely in an efficient
manner. To illustrate the use of ITCPN for modeling and ex-
ecution of a race condition-type attack, we assume a three-
tier electronic commerce site in the following scenario (this
scenario is a composite of multiple typical application-layer
attacks and does not correspond to a single existing system).
Without loss of generality, we assume a back end database
system and an intermediate application layer (e.g. running
on web servers with servlets), running on multiprocessor or
at least multithreading systems.

The objective of the penetration test is to modify back
end data, in this case to modify the shipping data of a cus-
tomer’s order. It is not necessary for the attacker to compro-
mise either the application or back end layer for this attack
to succeed.

We further assume that, during the information gather-
ing phase, it has been ascertained that all connections to the
application layer are secured via a TLS channel and that
the firewalling mechanism separating the presentation layer

(client side) from the application and back end layers are
effective. However, an attacker is able to obtain data from
customer identification cookies from legitimate customers,
as is commonly accomplished through e.g. cross-site script-
ing. The penetration tester has, moreover, also identified a
construction rule for legitimate transaction identifiers2.

Subsequently, the penetration tester can either through
deduction from existing commerce back ends or through
study of design documents identify the final step in perform-
ing a purchase, namely the confirmation on the part of the
customer (after having signed onto the commerce site, se-
lected the merchandise and entered shipping and payment
details) and the recording of purchase data with both inter-
nal and external databases and services.

The elements of the order confirmation transaction thus
obtained are as follows:

Inventory update In this step, an update of the inventory
database table is performed.

Payment confirmation A final confirmation of customer
credit standing is performed by an banking service and,
on success of this step, the payment is recorded in the
local credit database.

Shipping processing The shipping details are written to
the shipping information database table.

Order fulfillment Based on the previous information,
merchandise pickup data and shipping addresses are
collated and sent to the shipping agent.

The operative flaw hypothesis is that developers have, in
order to obtain maximum throughput, the various databases
accesses during the course of the transaction, are performed
with row-locking at each stage, but not across multiple
stages of the above transaction. Only the entire transaction
can be rolled back in case of a failure at an individual stage.

An attacker able to inject data with valid customer and
transaction identification to the application layer as de-
scribed above can perform modifications to the shipping in-
formation database table after the completion of the third
stage and prior to commencement of the fourth stage, re-
sulting in goods being diverted to an attacker’s address of
choice. In this type of attack scenario it is not necessary for
the attacker to learn payment information details of a cus-
tomer, or to compromise the back end; the hypothetical flaw
lies solely within the application logic and its implementa-
tion in accessing the database back end.

To model an application-level penetration, an ITCPN can
therefore be constructed that focuses the primary level of
detail and timing dependency on the progress through the
transaction stages outlined above. Each of the four steps
described above is framed by a beginning and ending tran-
sition associated with a time interval, along with a similar

2In many electronic commerce applications these are simple sequence
numbers and therefore trivial to predict.



time interval for intermediate processing between the steps.
The same structure can then be used – with different col-
ors – for a transaction initiated but not completed by the
attacker.

To simplify the network sufficiently so it will fit on a
single page, we assume that the attacker has an injection
channel (modeled separately) into the database communi-
cation between steps three and four. Such an attack can be a
(timing independent) HTTP POST request that utilizes the
information gained as described above. Since the attacker
is authenticated as a valid customer through the TLS layer,
perimeter defenses are unlikely to register this injection as
a malicious act.

Figure 2 on page 9 shows the attack model. This
interval timed colored Petri net uses product color sets
(Inventory, Credit, Shipping, SendShipping,
Ordr), which combines other color sets (strings and inte-
gers) to represent the information written to the back end
database. These product color sets and the color set Lock
are timed.

Prior to the attack steps shown in the attack model in fig-
ure 2 on page 9, the customer has finished and confirmed
his order. The attack models the system confirmation steps
in parallel with the attacker’s injection action. The place
confirmed order represents the system state where a
customer has confirmed his order in the presentation layer.
From this point in time the penetration tester must time his
injection. The timing will vary because of the distributed
nature of the system, hence the interval timing. The first
transaction, req inventory update, will update the
inventory table in the back end database. The entire trans-
action is modeled to consume time, that is between 1 and 6
([a, b]) time units (here: milliseconds). The minimum time,
1, represents how long the entire transaction may take if
there are no delays. Acquiring the database table lock is
modeled to take between 0 and 12 ([c, d]) time units, de-
pending on database load. The minimum time of 0 is cho-
sen because the lock may be available immediately for the
transaction update inventory. The transaction will
not fire before there is at least one token in all input places.
The fuzzy timing is represented by closed intervals in the
interval timed colored Petri net. The first confirmation step
– inventory update of a customer order – can by this use all
between 1 and 18 ([a + c, b + d]) time units in the attack
model.

The second confirmation step, payment confirmation, is
modeled similarly to the former. However, this step uses a
slightly different timing, simulating that the loads on the
credit database table are different from the more heavily
loaded inventory table. At the same time as the payment is
written to the credit table, a payment confirmation is sent to
the external financial service, confirming credit withdrawal.
In the next confirmation step the address is written to the

shipping database table. It is here that the race condition
the penetration tester is trying to exploit appears. The req
fulfillment transition will wait for the results from the
database table write to finish, and then the shipping fulfill-
ment will read from the shipping table and finish the or-
der. The transaction read shipping details will in
most database systems acquire a shared read lock that pre-
vents the row or table to be updated at the same time as an-
other client attempts to read. However, because of the time
window that appear between the write to the database table
and the read from this database table by the two last fulfill-
ment processes (and an imprudent lapse of the surrounding
lock), the attacker can gain a exclusive write lock before
the transaction read shipping details commences
reading.

Immediately after the customer has placed his order, the
attacker will inject the changed shipping address, leaving
the remaining data untouched. The available time window
for the attack appears after the shipping details has been
written to the shipping database table and the final fulfill-
ment step is initiated. Thus, if the attacker can inject a new
record into the database shipping table before the transac-
tion read shipping details is fired, the attack is
successful. By calculating the minimum and maximum
time this could take, we can obtain an interval where the
injection is most likely to be successful. This interval must
start from the starting point, that is from where the customer
confirms his order in the presentation layer, to the maxi-
mum time it can take for the customers shipping details to
be written to the database table. In the attack model this
time interval can be calculated to be in the closed time in-
terval [3, 60]. In this time interval the attack will be most
likely to succeed. This means however that the attack will
not always will succeed, but it is likely to succeed after
a small number of (automated) attempts. The main flaw
hypothesis investigated here is the race condition situation
between the confirmation steps. The small time window
which appears between the release of a lock and the next
confirmation step make the injection possible. Another un-
derlying flaw in the system that becomes clear from this
penetration test is the weak user identification mechanism.
The system design has a weaknesses in separating user that
has been authenticated against the server by username and
password and subsequently through a cookie mechanism.
The internal processes assume that a message with a spe-
cific customer identification always comes from the correct
client. This assumption can be imprudent, especially when
the transaction identification can be intercepted or guessed
by an adversary, meaning that an adversary may have all in-
formation that identifies an order in the back end database.
The flaw of being able to guess transient transaction identi-
fiers in combination with the customer identifiers make this
vulnerability (present in quite a few shopping-cart type ap-
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plications) dangerous. If the system had not released the
database table or row lock between each stage in the fi-
nal confirmation steps, the attacker would not be capable
of injecting arbritary information and thereby change a cus-
tomer’s order that has already been properly approved by
the customer, application and external systems. However,
for performance reasons, and because of the distributed na-
ture of the system, such locks are frequently not used in
such a conservative way. A downgrade from the exclusive
write lock to a read lock could help in the two last steps
of the confirmation transaction, but this is again difficult to
realize in a distributed environment. In addition, the elim-
ination of all HTTP POST injections would also stop this
attack, but in complex multi tier e-commerce systems like
this it is difficult prevent all such injection possibilities and
may again result in significant performance penalties.

This attack scenario has demonstrated the use of a in-
terval timed CPN for modeling a moderately complex time-
dependent vulnerability and exploits of such vulnerabilities.
Even in such a limited scenario, however, the benefits of a
more rigid modeling approach and the ability to perform
a round-trip modeling, simulation, and execution flaw hy-
pothesis penetration test have become apparent.

5 Related Work

Tool-based flaw identification mechanisms for penetra-
tion testing were investigated in parallel with the develop-
ment of penetration testing methodology for operating sys-
tems [13, 5, 1], but were not pursued further. The main use
of tool-based mechanisms currently is in the identification
of network topologies, system services, and and network
host configurations [33]; the confirmation of flaws’ exis-
tence is also facilitated by tools such as Nessus, Metasploit,
and Core Impact.

As noted in section 3, the use of Petri networks for
the description and modeling of abstract attack approaches
was proposed by McDermott 3. Subsequently, Steffan and
Schumacher [29] proposed a similarly abstract knowledge-
sharing approach to attack modeling that combines the free-
form mechanisms of Wiki publishing systems with condi-
tional transitions as may be found in Petri nets, albeit with-
out formalized semantics.

Petri nets and Colored Petri nets have, however, been
used extensively in the design and implementation of intru-
sion detection systems such as those by Kumar and Spafford
[18] and Helmer et al. [12] along with related formalisms
based on timed finite state machines such as the approach
proposed by Chang et al. [6], which may be considered as
complementary to the approach described in this paper.

6 Conclusion and Future Work

This paper has described a mechanism for the modeling,
partial analysis, and automatic execution of multi-agent,
multi-stage attacks based on interval timed colored Petri
nets. The ability to construct partial and hierarchical mod-
els using an intuitive yet mathematically sound mechanism
and a graphically oriented toolkit permits the exploration of
several types of attacks, particularly based on TOCTOU and
race conditions, which are difficult to identify in network-
based environments. By coupling an execution mechanism
based on sampling interval times and parameterizing at-
tack code fragments, such attacks can be automatically con-
ducted based on the model constructed once the iterative de-
velopment of attack scenarios has reached a sufficient level
of specificity. Moreover, both attack fragments and ele-
ments of attack scenarios can be reused either in part or as
components of larger-scale attacks.

Such mechanisms should provide the ability to expose
vulnerabilities particularly for network-based application
systems that are difficult to identify in the course of manual,
heuristic-driven penetration testing given the effort required
in manually constructing attack scripts that are specific to
a given application system and which may not be transfer-
able to other sites without major modification or complete
revision.

Future work will include investigations into the use of
generalized stochastic Petri nets Monte Carlo-based sam-
pling strategies for coverage of the state space; in addition,
the composition of partial attack models from heteroge-
neous sources in which data structures and data types need
to be reconciled for use in larger-scale ITCPN requires fur-
ther investigation to permit the use of this attack and pene-
tration testing model for collaborative efforts. Another sub-
ject of future work that should prove useful is the integra-
tion of multiple subnets (and, where necessary, their ho-
mogenization through renaming and intermediate networks
to reconcile naming and token cardinality conflicts) and the
semi-automated documentation of full FHM roundtrip anal-
yses that so far need to be conducted manually, leading to
less than consistent documentation of the penetration test-
ing processes.
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