
Enforcing Messaging Security Policies

Jaromir Likavec
Fraunhofer-IGD
Fraunhoferstr. 5

Darmstadt 64283, Germany
likavec@igd.fhg.de

Stephen D. Wolthusen
Fraunhofer-IGD
Fraunhoferstr. 5

Darmstadt 64283, Germany
wolt@igd.fhg.de

Abstract

A system for enforcing messaging security policies for
both store and forward and streaming messaging protocols
on COTS operating system platforms is described. Mes-
saging protocols are subjected to interception, transfor-
mation, and filtering based on dynamically configurable
security policies. Transformations include the automatic
policy-based application of cryptographic confidentiality,
integrity, and authenticity mechanisms and filtering primar-
ily based on Bayesian analysis. The system provides a low
cost, fine granularity compartmentalization mechanism for
secure environments as well as for sensitive but unclassi-
fied environments using COTS operating systems and appli-
cation programs without affecting user or application be-
havior in which the mediation of access to key material and
messaging provides protection against malware and insider
attacks.

1. Introduction

While guard mechanisms between network segments at
different levels of classification have proven adequate for
interconnecting larger-scale units, unit cost and adminis-
trative overhead generally prohibit the use of network and
electronic mail guard mechanisms at finer levels of granu-
larity.

Smaller units, together with the frequent need for
high-granularity control over information exchange, partic-
ularly in coalition environments and during deployments in
network-centric environments, however, make it highly de-
sirable to have such controls in place — ideally at the level
of granularity an individual’s workstation without requir-
ing large, complex, and expensive messaging infrastructure
components.

A second factor for such requirements also exists in the
civilian sector, namely that while security policies may well
dictate the use of encryption, digital signatures, and even

time stamps for certain types of communication (e.g. pro-
curement, sensitive interactions with customers), compli-
ance is not enforced but rather lies in the area of respon-
sibility of individual communicating staff members. As the
analysis in section 2 shows, this trust is severely misplaced
and would indicate a need to use mandatory (guard) mech-
anisms as well. Unlike in defense applications, however,
the balance between security and other requirements must
be observed more closely in such environments, which a
mandatory messaging security mechanism must take into
account.

2. Baseline Analysis

Existing guidelines recommend and draft guidelines re-
quire the use of secure messaging (particularly the use of
digital signatures) at the authors’ installation even for un-
classified messaging traffic.

The guidelines are published internally to the organiza-
tion flanked by awareness measures.

For email messaging security, two infrastructure mecha-
nisms are provided. For sporadic communications with enti-
ties that do not or cannot support public key infrastructures,
an OpenPGP infrastructure including key services are pro-
vided. Conversely, for more structured communication rela-
tions with entities that use public key infrastructures based
on open standards (e.g. the ITU-T X.500 series, LDAP,
OCSP, and S/MIME), PKI services, including key servers
and a local registration authority are provided at the instal-
lation. A number of mail user agents are supported on each
supported operating system platform for both secure mes-
saging infrastructures, giving each staff member access to
secure messaging.

Following an informal survey among senior staff in
which low compliance levels were acknowledged, a de-
tailed compliance analysis was performed. To this end, all
unclassified (E)SMTP messaging traffic outbound from the
installation was intercepted and monitored for the pres-

ence of digital signatures and encryption using the follow-
ing protocols:

� S/MIME

� (Open)PGP

� PGP/MIME

The analysis was performed over a time of 11 days and
intercepted a total of 14356 messages. Of these, 753 were
generated using one of the above cryptographic mecha-
nisms, for a total of 5.24%. Figure 1 provides a breakdown
of the mechanism types observed versus the total number of
messages over time.

Figure 1. Compliance baseline analysis

3. Usability Considerations

The results outlined above indicate that, despite the pres-
ence of extensive technical facilties, actual use of secure
messaging facilities is sharply limited.

A qualitative survey of reasons given for noncompliance
included the following:

� Lack of suitable key material by recipient
(encryption)

� Tendency to forget subtasks not immediately relevant
to task at hand
(encryption/digital signatures)

� Secure messaging interface is too complex
(encryption/digital signatures)

� Additional steps required for secure messaging limit
productivity
(encryption/digital signatures)

Most of these reasons have been observed in other appli-
cation areas for cryptographic tools [1, 32].

Given particularly the number of messages using digital
signatures in relation to the number of encrypted messages
sent, the following main observations can be made:

� Services that can be employed following a one-time
configuration without requiring subsequent inter-
actions have a compliance two orders of magni-
tude larger than those requiring intervention for each
use

� Regardless of mail user agent (MUA) employed, con-
cerns about interface complexity were raised.

Based on the above observations and measurements, the
following design principles can be formulated for secure
messaging:

Non-Bypassability Application-based messaging security
mechanisms can be bypassed or disabled intention-
ally or unintentionally by misconfiguration (includ-
ing lack of initialization). In addition, application pro-
grams may be employed that lack support for required
protocols.

To avoid both types of flaws, messaging security
must be embedded at a level that is independent of ap-
plication programs and cannot be bypassed by applica-
tion programs.

Automation All operations required to enforce applicable
security policies must be automated to the largest ex-
tent possible, i.e. only require user intervention if nec-
essary for security purposes (e.g. for identification and
authentication).

Protection of Key Material and Authentication In soft-
ware systems typically used for securing unclassified
message traffic, key material used for sealing and sign-
ing messages as well as access paths to such key ma-
terial are accessible to processes with user creden-
tials.

Threats resulting from this configuration include
unauthorized access to key material and messages by
Trojan horses or other processes with access permis-
sions to key material and the unauthorized sending of
messages on behalf of a third party.

Access to key material must therefore be subject to
mediation and be configurable to require positive iden-
tification and authentication for performing operations
as dictated by applicable security policies.

The remainder of this paper describes a mail guard archi-
tecture and implementation that takes the above design prin-
ciples into consideration and which achieves the twin goals
of improving the assurance of the and the usability messag-
ing process at the same time.

4. Guard Mechanisms

The goals set forth in section 3 (modulated by security
policy requirements) can be achieved by embedding inter-
ception and filtering mechanisms into the operating system
at all applicable layers in the network and application stack.

Depending on the security policy to be enforced, mes-
sages or message streams can be subjected to arbitrary
transformations (e.g. substituting a message with a message
encrypted for the intended recipient or recipients or discard-
ing the message altogether).

While the semantics of the filtering process are theoret-
ically platform-independent, this is not the case for the in-
terception mechanism itself. Moreover, the architecture of
the underlying operating system can limit the set of pos-
sible transformations for the filtering process (see section
4.3). To reflect this, the following discussion concentrates
on a reference implementation based on the Microsoft Win-
dows NT operating system family1 Section 4.1 summarizes
the interception mechanism architecture; sections 4.2 and
4.3 discuss specific requirements for store-and-forward and
stream-based messaging protocols, respectively. Section 4.4
describes the preprocessing step required for performing
the content-based filtering as well as cryptographic trans-
formations using the example of Internet (SMTP/MIME)
mail messaging. Finally, section 4.5 discusses the content
filtering processes applied to the message data itself (cryp-
tographic transformations are discussed in [33]).

4.1. Implementation Framework

The basic implementation architecture for providing se-
curity functionality in the network protocol stack of the Mi-
crosoft Windows NT operating system family has been de-
scribed earlier [27, 34] and is discussed here in summarized
form.

Unlike the other components such as file system han-
dling, the networking mechanisms provided by the Mi-
crosoft Windows NT operating system family do not share
a common abstraction for all supported types of network
communication.

Therefore, in addition to multiple environmental sub-
systems providing different access mechanisms to network
communication subsystems, there exist several conceptu-
ally different networking application programming inter-
faces. With exceptions described in detail in [34], the net-
work architecture of the Microsoft Windows NT family
consists of a number of layers, depicted in figure 2.

At the lowest level is the physical device. Access to in-
dividual devices is regulated by the hardware abstraction

1 including the NT 3.51, 4.0, 2000, XP, and 2003 releases unless other-
wise noted.

User Application (MUA/MTA/IM...)

API DLL (WS2_32.DLL) Extension DLLs

U
se

r
M

od
e

K
er

ne
l M

od
e

Transport Service Provider DLL (MSAFD.DLL)

SPI Layer

Service
Providers

System Support Library DLL (NTDLL.DLL)

Ancilliary Function Driver
File System Driver

I/O Manager

Protocol Driver
Protocol Driver

Transport Driver Interface

NDIS Library

Physical Device

Hardware Abstraction Layer

Physical Device

NDIS MiniPort
NDIS MiniPort

Transport Helper
DLLsTransport Helper

DLLsTransport Helper
DLLs

Namespace Helper
DLLsNamespace Helper

DLLsNamespace Helper
DLLs

Figure 2. Microsoft Windows NT operating
system family network protocol stack

layer (HAL). Network device drivers are generally realized
as NDIS (Network Driver Interface Specification) modules
consisting of the generic NDIS library and the device--
specific NDIS miniport drivers; the library fully encapsu-
lates the miniport drivers.

Accessing the NDIS library is the TDI (Transport Driver
Interface) mechanism. This itself consists of transports (or
protocol drivers), supporting the various transport mecha-
nisms such as NetBEUI and TCP/IP, and TDI clients which
provide services for sockets and NetBIOS calls. None of
these modules can be called directly from applications since
they are protected kernel mode interfaces. It is in this layer
that the translation between the file-oriented abstraction
presented to upper level protocols and ultimately applica-
tion programs and the general packet-based I/O architec-
ture of the Windows NT operating system family occurs.

Upper-level APIs such as NetBIOS and Windows Sock-
ets are subsequently implemented at the user level and must
use the aforementioned interface layers.

Since multiple access paths for network transmissions
exist that can bypass some or all protocol layers above the
NDIS layer, it is necessary to perform interception at the
NDIS layer itself. However, the NDIS layer is not provided
with information on processes originating network traffic
and can only observe individual fragments of information
flows. To assist in the proper association of network flows
with processes and therefore ultimately the subjects of se-

curity policies, higher protocol layers such as TDI must also
be instrumented as supplementary information sources.

The results of this interception mechanism are (both
inbound and outbound) either raw network data streams
(e.g. IP packets, corresponding to ISO/OSI layer 3/4 data)
or payload data streams (corresponding to ISO/OSI layer 5
and above).

4.2. Store and Forward Protocols

The application of arbitrary transformations to mes-
sages processed by store and forward protocols is gen-
erally straightforward; a suitable heuristic must detect
the requisite protocol data units and supplemental infor-
mation (e.g. the beginning of a protocol transaction on a
well-known IP port) and store the full message sent subse-
quently before forwarding it to the further processing steps
discussed below.

However, several complications arise in this case as well.
First, since the upper-level abstraction for network traffic is
based on a file paradigm, upper-layer protocols can and do
keep track of the relative position in the virtual file repre-
sented by the network stack. It is therefore necessary to ad-
just these virtual file positions in translating between the ab-
straction layers in the network protocol stack.

The second complication is the need for protocol analy-
sis to determine that a store and forward protocol is indeed
used. To this end, a set of timed2 general Büchi automata
A � ��Zi

� ��i
� li� Zi

�
�� i�� where for each i, �Zi

� ��i
� li� is

a transition system with a fixed alphabet, Zi
�
� Zi the set

of initial states and � i � ��Zi� the set of sets of accept-
ing states [31], is used. The determination of an accepting
state (heuristically, since it cannot be ruled out that multi-
ple accepting states exist or that an accepting state is a prefix
of another) indicating such a protocol requires that a num-
ber of protocol data units has been set or an information ex-
change has been established. The interception mechanism
must admit such flows and therefore retain state informa-
tion on such prefixes before shunting network flow to the
actual filtering mechanism to be able to reconstruct the full
exchange of protocol data units that may be required to per-
form filtering operations.

The special case of HTTP-based messaging has been dis-
cussed in an earlier report [27].

4.3. Stream-Based Protocols

For stream-based protocols, transformations must
be performed in-line and are therefore typically lim-
ited to transformations that do not change the length of
each stream element protocol data unit.

2 for a rationale for using the timed variant see section 4.3.

Most of the above limitations are dependent on the ap-
plication protocol in use, necessitating higher level protocol
analysis and therefore also reconstruction of protocol ele-
ments. This imposes a severe burden for protocols that are
both proprietary and experience frequent version changes as
is the case for some instant messaging protocols.

More importantly, unlike store and forward protocols,
streaming protocols (which include both multimedia proto-
cols that are sensitive to delay and jitter imposed on e.g. au-
dio transmissions and basic network protocols such as the
Telnet protocol) are sensitive to the delays imposed by in-
terception and filtering and may either degrade or fail in the
presence of excessive delays.

Moreover, such protocols may also use time (e.g. delay
between protocol data units) as an implicit element of pro-
tocol exchanges and therefore exhibit different semantics
when exposed to such excessive delays.

The heuristics for interception and filtering must there-
fore also ensure that no (protocol-specific) time bounds are
exceeded; this is ensured by the use of parallel timed Büchi
automata. In case a bound is exceeded without reaching a
positive protocol identification or performing a transforma-
tion step, the security policy may e.g. dictate to terminate
the ongoing data stream in its entirety.

4.4. Preprocessing

Transformations required for content filtering as well as
some additional transformations (e.g. encryption) require
knowledge of the encoding syntax and possible additional
transformations applied on each semantic layer to be ana-
lyzed and processed.

In the case of standard Internet mail, a large number of
possible encoding formats has emerged since the first stan-
dard definition [4] mainly related to the transport of multi-
media data types.

The MIME (Multimedia Mail Extensions) standards [9,
10, 24, 11] provide an extensive selection of encoding and
transmission formats as well as means for embedding ar-
bitrary new multimedia types within the processing frame-
work provided by MIME. Typically, however, MUAs sup-
port only a subset of this selection [11]. For a MIME mes-
sage to be subjected to transformation, it must be decoded
in a somewhat elaborate process. Each MIME message may
contain several parts, which in turn are subject to several
processing steps until the desired decoded information is
available. Depending on the transport path selected (e.g. [4]
supports only 7 Bit ISO 646 transmissions), it may first
be necessary to revert a content transfer encoding, which
can be different for each part. The MIME standard re-
quires3 the definition of a content type for each message or

3 The absence of a content type definition is assumed to denote a 7 Bit

part (such as the type application/postscript for
Adobe PostScript documents). In benign cases this infor-
mation can be used to infer appropriate processing steps by
the guard; however, the reliability of this type information
is frequently limited since message types for which MIME
types exist are not identified properly or can be misidenti-
fied (e.g. by using heuristics based on file names instead of
syntactical analysis on the part of the MUA). For transfor-
mations by the guard requiring detailed type information,
it is therefore frequently necessary to perform a syntacti-
cal analysis independent of the MIME content type.

Besides the already mentioned possibility of providing
multiple parts within a single message (each potentially
of different media types), the MIME standard permits sev-
eral additional mechanisms which complicate the process-
ing of messages. One such mechanism is the fragmentation
of messages (typically used if individual messages exceed
a size threshold); in this case the sequencing and path de-
lay problems familiar from packet-based networking occur
and a fragment reassembly at the guard level must occur.
Another mechanism is the use of message body types. In
most cases a MIME message body is provided inline within
a message. However, it is also possible to specify exter-
nal message bodies, in which case messages received con-
tain only references to other resource locators from which
the MUA or the user can retrieve the actual message (part)
body.

Some protocols can also trigger the use of other proto-
cols and communications; this is e.g. also the case for In-
ternet mail in case of MIME external message bodies but
is most prominently present in HTTP-based protocols and
instant messaging protocols and must therefore be either
blocked or also intercepted and transformed in accordance
with applicable security policies; for a discussion of sev-
eral of these issues refer to [33] and [27].

4.5. Analytical Processes

Keyword-based content filtering has been used exten-
sively in guard architectures [16, 28, 29]; other approaches
include techniques such as metrics for precision and recall
based on feature similarity [23].

To address several threats, however, additional proba-
bilistic techniques are required. One such threat is also
commonly found in unsolicited commercial electronic mail,
namely spelling errors and homophones (particularly from
multilingual character sets that cannot be distinguished vi-
sually from one another). Such variations may be inserted
both deliberately as well as inadvertently but must be identi-
fied in either case4. An efficient mechanism for implement-

ISO 646 text
4 An inside threat is always capable of devising an encoding scheme to

circumvent such an approach; the ability to detect such changes auto-

ing a heuristic to capture such homophones and variations
is the use of Bayesian networks [26, 12, 17];

An additional level of protection (partially explored by
Monteith et al. [23]) is the inverse use of techniques found
in information retrieval. Bayesian networks can also be em-
ployed here, in this case in the form of Bayesian belief net-
works (directed acyclical graphs in which vertices repre-
sent random variables and edges represent relationships be-
tween linked variables where the strength of influences are
expressed as conditional (Bayesian) probabilities.

Concepts can now be expresed as vectors of random
variables over which various metrics, particularly similar-
ity metrics can be defined [6, 7]. This permits the definition
of security policies that heuristically attempt to identify not
only sensitive terms and expressions but also the use of re-
lated concepts and circumlocutions and take appropriate ac-
tions based on this (e.g. notifying administrative or security
personnel).

5. Mediation Mechanisms

Threats to the security and integrity of the messaging
process on the sending (and to a lesser extent on the re-
ceiving) side include malicious users with access to a work-
station acting on behalf of the user without his consent or
knowledge, and also various types of malware.

Malware can suborn the messaging system in several
ways. It may send messages on behalf of the user by di-
rectly sending network traffic or by using general messag-
ing interfaces without assuming a legitimate user identity
on the host operating system, directly spoofing addresses.

In addition, malware acting within the process context
of a user (e.g. a Trojan horse) can use the regular messaging
mechanisms, usurping the identity of the user and, more-
over, potentially leaving audit trails indicating that a user
has indeed performed a given action.

On a GUI-based system, an additional threat comes from
processes feeding synthetic GUI actions to simulate user be-
havior. As in the previously noted case, this also will leave
plausible audit trails implicating a legitimate user.

The latter threats are also present if cryptographic mech-
anisms are used. However, an additional threat exists that
renders client-side cryptographic mechanisms largely moot
in that malware that has access to the regular graphical user
interface (e.g. window message stream) or even the client
process memory space can compromise both key material
and the authentication data such as passwords used to nom-
inally secure the key material. It is therefore straightforward
for malware to both decrypt (or forward encrypted messages
together with the required key material) messages and to en-

matically in all cases would correspond to solving NP-hard problems,
e.g. Post’s correspondence problem.

crypt and particularly to cryptographically sign messages
on behalf of the user.

Particularly in jurisdictions where digital signatures
carry evidentiary value, the latter scenarios present a sig-
nificant threat.

To counter this threat the mail guard architecture dis-
cussed here, user entities including processes belonging to
a user are not permitted to access key material directly to
avoid the leaking of such material to processes acting on
behalf of the user or third parties otherwise obtaining con-
trol over a process (e.g. accessing an unlocked workstation
in the absence of a legitimate user).

To ensure this separation, all cryptographic transforma-
tions are performed by the operating system on behalf of the
user in accordance with applicable security policies; typi-
cal policies include the automatic application of digital sig-
natures to outbound message traffic or mandatory encryp-
tion for communication between certain parties or based on
the sensitivity of files accessed by the message sending pro-
cess prior to commencing communication.

To this end, the operating system’s trusted path mecha-
nism is used by the implementation to provide a communi-
cation channel to the operating system over which the iden-
tification, authentication, and authorization (IA�) is to be
transmitted.

In case of the Microsoft Windows NT operating system
family, this is achieved by inserting a chained element into
the graphical identification and authentication (GINA), and
triggering the display of this element whenever a IA� datum
is required (see figure 3).

The feature5 implements a switch to a desktop which
cannot be accessed for input or output by application pro-
grams that is always triggered by entering the system at-
tention sequence6. The user can confirm the authenticity of
this request by initiating the non-bypassable system atten-
tion sequence (SAS), for which the base operating system
guarantees that it cannot be intercepted or simulated by ap-
plication programs. Any impostor application displaying a
request similar to that shown in figure 3 is therefore dis-
connected once the SAS is issued, and only the legitimate
request can be displayed. Moreover, the operating system
also ensures that no application program can intercept com-
munication with the display once the SAS has been issued.
This is of particular interest for input that is e.g. used to un-
lock key material on behalf of the user as well as for other
actions that require the immediate confirmation of a user’s
presence and expressed will to continue with an operation.

5 A requirement that originated in the TCSEC B2 class but which was
nevertheless included in the Windows NT design.

6 However, it should be noted that one must still assume that none of the
device driver or other kernel components involved in I/O are tainted or
compromised; trusted computing extensions to the basic system plat-
form and hardware proposed by the Trusted Computing Group may in
the future provide additional assurance for such circumstances.

Figure 3. Authorization of operations via
trusted path

6. Related Work

Guard mechanisms for messaging and subsequently also
for other types of data (e.g. database accesses, geospatial
intelligence data) were first developed in the form of the
the Advanced Command and Control Architecture or AC-
CAT Guard by Woodward et al. at MITRE and Logicon
[2, 35, 25, 14, 30].

The ACCAT Guard provided monitoring and sanitization
of bidirectional queries and responses between database
systems operating at different security levels with human
review and was based on the KSOS system for trusted pro-
cessing; although a version based on a security kernel en-
forcing enforces the axioms of the Bell-LaPadula model
was created, the requirement for explicit downgrading and
the inability to determine the semantics of sanitization lim-
ited the enforceability of the �-property.

Other examples of guard systems include MMS devel-
oped by Landwehr, Heitmeyer et al. [21, 22, 16, 15, 3]
and the Standard Mail Guard whose implementation was
derived from the LOCK prototype [28, 29]. In addition, a
number of products (some also available commercially and
intended for civilian use) provide centralized guard as well
as encryption functionality pursuant to the U.S. Department
of Defense mail guard for high robustness environments
Common Criteria (ISO 15408) protection profile, e.g. the
XTS-400 Standard Automated Guard Environment by Dig-
italNet Government Solutions.

The NRL pump by Kang and Moskowitz [18] which
was later extended to networked systems [20, 19] repre-
sents a guard mechanism explicitly intended for limiting
covert channels. Davida et al. introduced the systematic use
of cryptographic mechanisms for the control of information
flow between dedicated units in a multilevel environment
[5]. Epstein and Monteith, moreover, proposed the use of
probabilistic mechanisms for flow control based on infor-
mation flow signatures [8, 23]; this enables a probabilistic

automated downgrading mechanism.
For a survey of guard policies and mechanisms as appli-

cable to SECRET and below networks with an emphasis on
alliance networks, refer to [13].

7. Conclusions

This paper has, starting from an analysis of operational
experience with compliance to messaging security policies
for unclassified messaging traffic, identified several con-
tributing factors to strong noncompliance. Based on this
analysis, design principles were formulated and an imple-
mentation was described that addressed said issues.

The system presented provides the means for enforcing
messaging security policies particularly within secured en-
claves against malware-induced unauthorized behavior as
well as protection against casual security lapses (e.g. leav-
ing a workstation unlocked temporarily, permitting an unau-
thorized individual to engage in messaging traffic on be-
half of another individual). Given the requirement for in-
strumentation of operating systems of limited trustworthi-
ness, this does not permit the substitution of boundary mail
guards (e.g. products conforming to the Common Crite-
ria protection profile for U.S. Department of Defense mail
guard for high robustness environments, see section 6),
however, and must be considered strictly as a supplemen-
tary mechanism for providing low cost, fine granularity
compartmentalization of secure environments using COTS
operating systems and application programs.

References

[1] A. Adams and M. A. Sasse. Users Are Not The Enemy. Com-
munications of the Association for Computing Machinery,
42(1):40–46, Jan. 1999.

[2] S. R. Ames, Jr. and D. R. Oestreicher. Design of a Mes-
sage Processing System for a Multilevel Secure Environ-
ment. In Proceedings of the National Computer Conference,
volume 47, pages 765–771, Anaheim, CA, USA, Nov. 1978.
AFIPS, AFIPS Press.

[3] M. R. Cornwell and A. P. Moore. Security Architecture for a
Secure Military Message System. Technical report, Naval
Research Laboratory, Washington D.C., USA, Apr. 1989.
NRL Memorandum 9187.

[4] D. Crocker. RFC 822: Standard for the Format of ARPA In-
ternet Text Messages, Aug. 1982. Obsoletes RFC 733.

[5] G. I. Davida, R. A. DeMillo, and R. J. Lipton. A System
Architecture to Support a Verifiable Secure Multilevel Secu-
rity System. In Proceedings of the 1980 IEEE Symposium
on Security and Privacy (SOSP ’80), pages 137–145, Oak-
land, CA, USA, Apr. 1980. IEEE Press.

[6] B. de Araujo Neto Ribeiro. Approximate Answers in Intel-
ligent Systems. PhD thesis, University of California at Los
Angeles, Los Angeles, CA, USA, 1995.

[7] B. de Araujo Neto Ribeiro. A Belief Network Model for
IR. In Proceedings of the 19th Annual International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 253–260, Zurich, Switzerland, Aug.
1996. ACM Press.

[8] J. Epstein. Architecture and Concepts of the ARGuE Guard.
In Proceedings 15th Annual Computer Security Applications
Conference (ACSAC’99), pages 45–54, Phoenix, AZ, USA,
Dec. 1999. IEEE Press.

[9] N. Freed and N. Borenstein. RFC 2045: Multipurpose In-
ternet Mail Extensions (MIME) Part One: Format of Inter-
net Message Bodies, Nov. 1996. Obsoletes RFC 1521, RFC
1522, RFC 1590. Updated by RFC 2184, RFC 2231.

[10] N. Freed and N. Borenstein. RFC 2046: Multipurpose Inter-
net Mail Extensions (MIME) Part Two: Media Types, Nov.
1996. Obsoletes RFC 1521, RFC 1522, RFC 1590.

[11] N. Freed and N. Borenstein. RFC 2049: Multipurpose In-
ternet Mail Extension (MIME) Part Five: Conformance Cri-
teria and Examples, Nov. 1996. Obsoletes RFC 1521, RFC
1522, RFC 1590.

[12] A. Gelman, J. B. Carlin, and H. S. Stern. Bayesian Data
Analysis. Texts in Statistical Science. Chapman & Hall, Lon-
don, UK, 2nd edition, 2003.

[13] T. Gibson. An Architecture for Flexible Multi-Security Do-
main Networks. In Proceedings of the 2001 ISOC Network
and Distributed System Security Symposium, San Diego, CA,
USA, Feb. 2001. Internet Society.

[14] J. Goodwin, G. Mitchell, and P. S. Tasker. Concept of Oper-
ations for Message Handling at CINCPAC. Technical report,
The MITRE Corporation, Bedford, MA, USA, Oct. 1976.
Number MTR-3323.

[15] C. L. Heitmeyer and M. Cornwell. Specifications for Three
Members of the Military Message System (MMS) Family.
Technical report, Naval Research Laboratory, Washington
D.C., USA, Mar. 1982. NRL Memorandum 5654.

[16] C. L. Heitmeyer and C. E. Landwehr. Designing Secure
Message Systems: The Military Message Systems (MMS)
Project. In Proceedings of the IFIP TC6.5 Working Confer-
ence on Computer-Based Message Services, pages 245–255,
Nottingham, UK, May 1984. IFIP, Kluwer Academic Pub-
lishers.

[17] F. V. Jensen. Bayesian Networks and Decision Graphs.
Statistics for Engineering and Information Science.
Springer-Verlag, Heidelberg, Germany, 2001.

[18] M. H. Kang and I. S. Moskowitz. A Pump for Rapid, Re-
liable, Secure Communications. In Proceedings of the 1st
ACM Conference on Computer and Communications Secu-
rity, pages 118–129, Fairfax, VA, USA, Nov. 1993. ACM
Press.

[19] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A Net-
work Pump. IEEE Transactions on Software Engineering,
22(5):329–338, May 1996. Revised from [20].

[20] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A Network Ver-
sion of the Pump. In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy (SOSP ’96), pages 144–154,
Oakland, CA, USA, May 1996. IEEE Press.

[21] C. E. Landwehr and C. L. Heitmeyer. Military Message Sys-
tems: Requirements and Security Model. Technical report,
Naval Research Laboratory, Washington D.C., USA, Sept.
1982. NRL Memorandum 4925.

[22] C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A Security
Model for Military Message System. ACM Transactions on
Computer Systems, 2(3):198–222, Aug. 1984.

[23] E. Monteith. Genoa TIE, Advanced Boundary Controller Ex-
periment. In Proceedings 17th Annual Computer Security
Applications Conference (ACSAC’01), pages 74–82, New
Orleans, LA, USA, Dec. 2001. IEEE Press.

[24] K. Moore. RFC 2047: MIME (Multipurpose Internet Mail
Extensions) Part Three: Message Header Extensions for
Non-ASCII Text, Nov. 1996. Obsoletes RFC 1521, RFC
1522, RFC 1590. Updated by RFC 2184, RFC 2231.

[25] M. A. Padlipsky, K. J. Biba, and R. B. Neely. KSOS —
Computer Network Applications. In Proceedings of the Na-
tional Computer Conference, volume 48, pages 365–371,
New York, NY, USA, June 1979. AFIPS, AFIPS Press.

[26] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan-Kaufmann Series In
Representation And Reasoning. Morgan Kaufmann Publish-
ers, San Francisco, CA, USA, 1988.

[27] E. Rademer and S. Wolthusen. Transparent Access To En-
crypted Data Using Operating System Network Stack Ex-
tensions. In R. Steinmetz, J. Dittman, and M. Steinebach,
editors, Communications and Multimedia Security Issues of
the New Century: Proceedings of the IFIP TC6/TC11 Fifth
Joint Working Conference on Communications and Multi-
media Security (CMS’01), pages 213–226, Darmstadt, Ger-
many, May 2001. IFIP, Kluwer Academic Publishers.

[28] R. E. Smith. Constructing a High Assurance Mail Guard. In
Proceedings of the 17th National Computer Security Confer-
ence, pages 247–253, San Diego, CA, USA, Oct. 1994.

[29] R. E. Smith. Cost Profile of a Highly Assured, Secure Gen-
erating System. ACM Transactions on Information and Sys-
tem Security, 4(1):72–101, Feb. 2001.

[30] J. D. Tangney, S. R. Ames, Jr., and E. L. Burke. Secu-
rity Evaluation Criteria for MMP Message Service Selec-
tion. Technical report, The MITRE Corporation, Bedford,
MA, USA, June 1977. Number MTR-3433.

[31] W. Thomas. Automata on Infinite Objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, volume B, chapter 4, pages 133–192. MIT Press, Cam-
bridge, MA, USA, 1990.

[32] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt: A
usability evaluation of PGP 5.0. In Proceedings of the 8th
USENIX Security Symposium, pages 169–184, Washington
D.C., USA, Aug. 1999. USENIX.

[33] S. Wolthusen. A Distributed Multipurpose Mail Guard. In
Proceedings from the Fourth Annual IEEE SMC Information
Assurance Workshop, United States Military Academy, pages
258–265, West Point, NY, USA, June 2003. IEEE Press.

[34] S. D. Wolthusen. Tempering Network Stacks. In Proceed-
ings of the NATO RTO Symposium on Adaptive Defence in
Unclassified Networks, Toulouse, France, Apr. 2004. NATO
Research and Technology Organization.

[35] J. P. L. Woodward. Applications for Multilevel Secure Op-
erating Systems. In Proceedings of the National Computer
Conference, volume 48, pages 319–328, New York, NY,
USA, Nov. 1979. AFIPS, AFIPS Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

