
ava i lab le a t www.sc iencedi rec t .com

www.compseconl ine . com/publ i ca t ions / prod in f .h tm

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 1 (2 0 0 6) 1 6 0 – 1 6 5
Windows device interface security

Stephen D. Wolthusen

a b s t r a c t

This paper discusses both risks and mitigation strategies for risks and threats associated

with physical device interfaces. To this end, a brief discussion of the I/O architecture found

in the Microsoft Windows operating system is followed by a review of several classes of at-

tacks possible using only external devices attached to standard device interfaces of host

computers. Based on this analysis, a selection of possible countermeasures including the

modification of the host operating system by wrapping the I/O mechanisms into a hardened

protective layer is discussed.

ª 2006 Elsevier Ltd. All rights reserved.
1. Introduction

While the number of potential attackers over a network

connection is much larger than adversaries within physical

proximity of a target system, it is nevertheless worthwhile

to consider the threats and security countermeasures avail-

able for securing device interfaces. This is particularly rele-

vant for mobile devices that are potentially exposed to

a large number of individuals, but is not necessarily confined

to this class of devices as even a momentary lapse of physical

supervision (e.g. in a meeting) may be sufficient to initiate an

attack. In addition to external attackers, these interfaces also

represent a threat vector for internal users intending to sub-

vert systems or to gain unauthorized privileges without leav-

ing readily identifiable traces that would occur in other cases.

Depending on an overall risk assessment, the threats de-

scribed here may even represent a major concern in environ-

ments that have stringent network security mechanisms in

place or are even protected by an air gap from external net-

works since the threats described in this paper can provide

an efficient pathway for subverting systems to gain privileged

access or to extract information from a target system surrep-

titiously while retaining plausible deniability since the devices

used for conducting these attacks are inherently dual-use in

their nature (e.g. smart phones or media players) (Arce,

2005); at the same time locking out all interfaces is increas-

ingly infeasible since dedicated ports, particularly for human

interface devices, are being phased out.

E-mail address: stephen.wolthusen@rhul.ac.uk

1363-4127/$ – see front matter ª 2006 Elsevier Ltd. All rights reserve
doi:10.1016/j.istr.2006.10.001
This article focuses on the risks posed by the use of devices

running the Microsoft Windows (2000/XP/Vista) operating sys-

tem along with several typical application programs found in

commercial environment with a focus on the host to which

the devices are attached. To this end, Section 2 describes the

pertinent aspects of underlying operating system structure

while Section 3 identifies a number of threats, both generic in

type and also exemplified with specific scenarios. Several possi-

blecountermeasures and tacticsarethen described inSection4.

2. Microsoft Windows device
interface architecture

The Microsoft Windows NT architecture (encompassing later

revisions including 2000, XP, 2003, and Vista) is based on a lay-

ered design in which the central abstractions are file objects

(similar to Unix derivatives) which are also used to represent

devices and device drivers. However, while the external inter-

face presented to application programs is procedural (repre-

sented by environmental subsystems such as the native

Win32 or the rarely used POSIX subsystem), the underlying

operating system itself is asynchronous and packet-based.

Fig. 1 omits the procedural interface layer and several other

kernel components not immediately relevant while identify-

ing the component interactions involved in device I/O relevant

to this discussion (Russinovich and Solomon, 2004; Solomon

and Russinovich, 2000; Oney, 2002).
d.

mailto:stephen.wolthusen@rhul.ac.uk
http://www.compseconline.com/publications/prodinf.htm

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 1 (2 0 0 6) 1 6 0 – 1 6 5 161
In this model, I/O requests originating from environmental

subsystems are routed through the native system services API

and the kernel-level I/O manager. The I/O manager dispatches

I/O request packets (IRP) to device drivers that are registered

with it (exceptions to this model exist, but are of no signifi-

cance to the following); ultimately the device drivers interface

with the hardware abstraction layer (HAL) which provides

access to the physical ports and memory areas required for

interfacing with the devices proper. While monolithic drivers

exist, the device driver layer is typically subdivided into sev-

eral devices. General I/O processing for a class of devices is

provided by class drivers while processing for types of ports

such as USB are frequently handled by port drivers. Specific

device instances within a type of port are then handled by

miniport drivers relying on the support of port drivers.

Moreover, the IRP-based I/O structure permits the insertion

of a type of driver called filter drivers into arbitrary positions

of this device driver stack and to require processing both in

the control flow direction towards the hardware as well as

in the reverse direction. This enables both pre- and post-

processing steps for each IRP; the latter are also possible

within individual drivers in the form of I/O completion rou-

tines that are called by the I/O manager after the processing

of an earlier step; the potential for exploiting this mechanism

for defensive purposes is discussed in Section 4.

If a device requires the attention of the operating system

apart from possible regular polling intervals, it is required to

post an interrupt (there may be several types of interrupt

depending on bus and device type, some of which are handled

at the bus interface). If such an interrupt is raised, the appro-

priate device driver registered for the given interrupt enters an

interrupt service routine (ISR) in which the operations re-

quired for servicing the device are either performed directly

in trivial cases or, more frequently, transformed into a deferr

ed procedure call (DPC), which then completes the required

operations at a lower interrupt privilege level, avoiding block-

ing the remainder of the system. All of these processing steps

must be handled by filter drives as well. As can be seen from

I/O Subsystem

WMI
Service

Application
Programs

Win32
Services

User Mode
PnP Manager

Setup
Components

WDM/
WMI

Routines

PnP
Manager

Power
Manager

I/O
Manager

Device Driver Layer

Hardware Abstraction Layer

U
ser M

ode
K

ernel M
ode

Fig. 1 – Windows I/O architecture.
the above discussion, inserting filter drivers into the process-

ing stack permit the insertion of instrumentation points for

monitoring and auditing as well as for access and other behav-

ior-based controls for existing, loaded device drivers; the typ-

ically modular structure of the device drivers (class, port, and

miniport drivers) permits the efficient interception of several

generic device interfaces without requiring knowledge of de-

vice drivers for individual device models.

Additional device driver functionality that can also be

made subject to interception includes I/O cancellation rou-

tines that are called whenever an I/O operation is canceled

either explicitly or by termination of the thread that caused

the original IRP to be issued; since such operations may not

only result in cleaning up of data structures but also involve

operations on physical devices, they must be intercepted

and made subject to security policies as well.

3. Threats

Regardless of the operating system type used, several broad

threat categories can be identified, some of which depend on

the type of interface and level of dynamism in the respective

operating system, which must be considered in addition to

threats against the mobile devices themselves (Susilo, 2002).

While all of these attacks (with the exception of some wire-

less attacks such as via Bluetooth that are not covered explic-

itly here and bridging physical interface protocols over

wireless links) require physical presence or at least proximity

to the target system, they nevertheless represent a significant

subversion and industrial espionage threat that is particularly

easy to conduct for insiders.

3.1. Application control

The underlying paradigm used for allocating various devices

attached via interfaces such as serial (RS-232C), parallel (IEEE

1284), USB, FireWire (IEEE 1394), and Bluetooth in most cur-

rently dominant COTS operating systems including various

Unix derivatives, Linux, and also Microsoft Windows permits

the association of application programs with devices and in-

terfaces without subsequent intervention. This model is gen-

erally limited to access control mechanisms operating on the

device interface as the sole entity (e.g. access control to a device

object under Microsoft Windows or device special files under

Unix derivatives). While some mechanisms may impose cer-

tain dynamism such as temporal restrictions of device access,

there are few limitations imposed on communicating through

an interface once access has been granted.

As a result, the enforcement of any security policy (e.g. ac-

cess controls) typically devolves to the area of responsibility of

the application program or, beyond this, the user of the appli-

cation program. Thus, if an operating system otherwise en-

forces security policies with regard to other external

interfaces such as network interfaces and storage interfaces

including ones for removable media, this leaves a gap in the

enforcement mechanism suite that could be exploited by

both malicious users and external threats.

An example of such an operation is the use of data syn-

chronization mechanisms for PDAs or similar devices; it is

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 1 (2 0 0 6) 1 6 0 – 1 6 5162
trivial to initiate a synchronization (i.e. transfer) of otherwise

protected data from a workstation to an untrusted device; typ-

ically all that is needed to circumvent the rudimentary au-

thentication policy is to present a completely blanked-out

device in which only the user name of the victim has been en-

tered. Default policies will assume the attacker’s device to be

a legitimate one whose memory has been erased (e.g. through

loss of power) and will proceed to upload all data designated

for synchronization on the user’s desktop. Such an operation

can, depending on the interface used, be performed clandes-

tinely within seconds while the legitimate user of the work-

station does not notice or is absent from the workstation’s

console (which can, e.g. occur in a populated area such as an

airport lounge). Moreover, the fact that such a data transfer

has occurred may not be readily apparent and visible only in

audit data that is likely to be used infrequently if at all. Typi-

cally, no authentication (e.g. password) is required, and the

user name is easily guessed. The culprit here is clearly that

the application program (i.e. the synchronization software)

implicitly assumes that any device physically present is au-

thorized to receive and transmit data. Similar problems arise

with other storage and communication devices whose policies

are based on similar assumptions.

For storage devices as well as for synchronized devices (e.g.

smart phones or PDAs), the threats are not merely the extrac-

tion of information but also the possibility of injecting mal-

ware into systems that may not have virus scanning and

detection active at all times.

3.2. Identification and authentication

Both common operating systems and application programs

typically do not identify and authenticate devices and applica-

tion programs (or users), regardless of whether the device is

configured statically or dynamically (see Section 3.3). In many

cases the underlying devices do not provide for such mecha-

nisms themselves (e.g. in case of human interface devices at-

tached via radio or infrared interfaces, these commonly

employ only limited disambiguation), which can lead to unde-

sirable interactions at both functional and security levels. In

other cases, the identification and authentication mechanism

does not, in addition to potential weaknesses, e.g. in the

strength of cryptographic mechanisms, establish the identity

of the communicating entities at the semantic level required.

As an example, the Bluetooth pairing mechanism1 establishes

only knowledge of the PIN code, not the identity of a device or

even of a subject controlling such a device. Frequently, the de-

vices attached to a host system do not identify individual users

but rather assume that the possession of the device either im-

plicitly identifies the user or that, conversely, the user identity

on the host system pre-determines the ownership of the

attached device.

In the example described in the preceding section, com-

mon PDA software performs an identification verification on

initiation of a data synchronization process by the user, but

does not authenticate this information. As a result, no

1 Establishing a shared secret (a PIN code) for symmetric
channel encryption and authentication using an out-of-band
mechanism.
additional user intervention (e.g. if a legitimate user is absent

and has locked the console) is required, and an attacker can

trivially prepare a PDA with the requisite user identity derived

heuristically or from unrelated communication. Similar

threats arise from devices in bus or broadcast configurations

taking over unauthenticated device identifiers without caus-

ing reconfiguration to take place (see Section 3.3); while such

operations may be detected in case of simultaneous opera-

tions of both the legitimate device and the attacker’s device,

human interface devices are particularly susceptible to this

type of attack since the shared medium (bus or wireless

broadcast) is rarely contended. Taking over an unused or tem-

porarily dormant identifier can also be used in an attack, e.g.

for eavesdropping on USB bulk data transfers between

a host and a legitimate device such as those provided e.g. by

the KeyGhost2 product. The configuration mechanisms of

the Windows platform (see also Section 3.3) make even foren-

sic analysis problematic as the system does not retain infor-

mation on device usage if, e.g. a device with the same

vendor and device ID as one that has already been encoun-

tered is attached; this can allow an adversary to either use

a similar device or mimic such a device at the protocol (e.g.

USB) level to avoid being detected while retaining the ability

to also perform additional actions such as (USB) bus snooping.

3.3. Dynamic configuration

A crucial feature permitting attacks described above and one

that is potentially problematic in its own right is the dynamic

and automatic configuration mechanism for new devices and

devices instances integrated into operating systems. In most

Unix derivatives this is somewhat limited, and although, e.g.

the Sun Solaris USB framework includes nexus drivers sup-

porting mass storage profiles and hence also has full volume

manager support for USB-based mass storage and removable

media, most Unix systems and Linux depend on individual

device drivers to support one or more dynamically (or Plug-

and-Play, PnP) configured devices.

The Windows NT family of operating systems, however,

includes extensive support for PnP (beginning with the Win-

dows 2000 release) and therefore faces several threats that

do not exist in the previously mentioned systems. Here, de-

vices found both during the boot process and identified at run-

time are activated. This occurs regardless of the privilege level

of the user or users currently logged in. If, for a given device,

no device driver is currently loaded, the PnP manager will at-

tempt to install a driver for such an identified device. It is par-

ticularly noteworthy that if the system contains the setup

components for the device (which is frequently the case since

the Windows NT family by default includes a repository of de-

vice drivers and setup components on installation), even this

reconfiguration will occur regardless of the currently active

users (see Fig. 1).

Such device drivers, even if they are not Trojan horses in-

stalled by an adversary, may cause undesirable interactions

with existing components or permit the attachment and

2 A family of products by KeyGhost Ltd., Christchurch, NZ,
which perform purely hardware-based human interface device
action logging, corporate URL: http://www.keyghost.com.

http://www.keyghost.com/

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 1 (2 0 0 6) 1 6 0 – 1 6 5 163
operation of devices along with application programs and sys-

tem services automatically installed along with the device

driver by the setup components (which operate at administra-

tive privileges) that contradict security policies in effect for

a given system. It is therefore possible to induce a demonstra-

bly insecure system state by having a system recognize an

additional or new device without requiring the presence and

actions of an authorized user or even elevated privileges.

Depending on the device class of the newly installed device

(e.g. a networking component), this can – together with other

default settings such as the automatic association with the

wireless network access point providing the strongest signal –

also result in transitive threats such as the possibility of other

devices joining in an ad-hoc network that violates security pol-

icies and is not adequately protected by the organization’s

firewalls.

3.4. Direct memory access

A threat class related to those described in Section 3.2 can be

identified in semi-autonomous communication mechanisms

that are not captured within the framework of network com-

munications and are hence not protected by firewalling mech-

anisms that have become both mandatory and ubiquitous for

network links.

The specifications of both the USB and particularly the

IEEE 1394 (also known as FireWire or iLink by some vendors)

device interfaces includes the requirement for a direct mem-

ory access (or DMA) capability. This mechanism is intended

to allow transfers to and from main memory to be initiated

and controlled by the device without intervention by the cen-

tral processing unit of the host computer and is primarily

intended to offload I/O processing requirements for time-sen-

sitive applications such as video capturing or streaming

where jitter induced by the CPU not servicing interrupt-based

I/O is unacceptable.

However, similar to the problems discussed in Section 3.2,

there is an implicit assumption of trust built into the device

drivers which faithfully provide DMA capability, the assump-

tion being that the host system will initiate such transfers and

set up the appropriate memory mappings before commencing

data transfers in a controlled fashion. This, however, is merely

convention and not covered by the interface specification. It is

therefore possible to initiate a DMA transfer from the device

side and have direct access to arbitrary memory locations

within the host computer.

While it is not trivial to target specific memory locations

since the DMA transfer can only operate on physical memory

addresses and cannot immediately access the virtual memory

page tables required for resolving the VM addresses used by

the host operating system, it is nevertheless possible to cir-

cumvent all memory protection mechanisms and access arbi-

trary memory locations both for read and write access,

including memory used by the kernel. An attacker can, e.g.

using a portable media player such as an Apple iPod, take

a full memory dump of the host system and then either search

for credentials or other data items of interest. Subsequently

the attacker may then, manipulate stored credentials (e.g. by

substituting hashed passwords or private keys for PKI certifi-

cates), change security settings for alternative entry routes,
or install code (e.g. a root kit). Even a passive memory dump

is obviously a significant threat since it contains a snapshot

of all applications and their loaded credential data, even if

the respective memory has been released since the respective

‘‘dirty’’ VM pages may not have been reclaimed.

3.5. Device driver quality

An emerging indirect threat can also be observed in that

attackers are increasingly targeting flaws and limited error

handling in device drivers to subvert host systems. This can

be accomplished by sending malicious protocol data units or

exploiting insufficient parameter validation mechanisms on

the part of the device drivers.

Given that drivers are required to run with SYSTEM privi-

leges, this allows attackers to subvert host systems directly

without network-based intrusion detection and prevention

systems being able to detect this type of attack. Besides requir-

ing an interface matching with the one the device driver on

the host is servicing, this class of attacks simply requires the

attacking device to be capable of running general-purpose

code and also to be able to modify protocol data units. In

this, it is similar to the attacks discussed in Section 3.4. Since

performance requirements for the attacks are generally very

modest or non-existent, a simple portable media player or

smart phone is generally sufficient to conduct this type of at-

tack. The attack itself (like others described above) can, e.g. be

conducted during an unobserved moment in a meeting or

when the targeted system is otherwise unattended and unob-

served for 1 or 2 min (Me, 2005).

4. Countermeasures

While it is possible to disable some interface types depending

on application profiles (e.g. serial and parallel legacy ports are

typically not used in contemporary environments, and few

applications explicitly require the availability of an IEEE 1394

interface for normal operations) and such capability is pro-

vided in part by the operating system or can be effected by

physically blocking or disabling the respective ports, this is

not always possible. For some interface types such as the

USB bus, this would assume that a given user or all users for

a given system will have no legitimate use for the interface

and all devices that may be attached to such an interface.

This is clearly not the case since at least some human inter-

face devices will need to be attached unless these are integral

to the computer system (which may not be admissible based

on health and safety regulations in any case for frequently

used systems).

Another possible countermeasure is the selective granting

of elevated privileges for accessing devices to certain applica-

tions or processes; an example of this approach is the device

allocation mechanism commonly found in MLS systems (e.g.

Sun Microsystems’ Trusted Solaris3) for removable media

and similar constraints which will presumably be part of the

Microsoft Vista operating system. While such approaches per-

mit, e.g. the handling of removable media, dynamically

3 http://www.sun.com/software/solaris/trustedsolaris/.

http://www.sun.com/software/solaris/trustedsolaris/

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 1 (2 0 0 6) 1 6 0 – 1 6 5164
configured bus systems are subject to similar constraints as in

the previously described countermeasure. Given the limita-

tions of such static protection mechanisms, it appears that

a security mechanism for dynamic devices and device inter-

faces should also be itself dynamic and adaptive and be able

to enforce any security policy an individual or an organization

might have with regard to the admissibility and use of such

devices. The following sections briefly describe some of the re-

quirements imposed on effective security mechanisms that

counter at least some of the threats described in Section 3.

4.1. Static device interface security

Group policies under the Microsoft Windows operating sys-

tem allow the fine-grained control over device drivers and ap-

plications and can be administered centrally. They are,

however, limited by their static nature and therefore must

be set in advance, anticipating the possible needs of all users

of a given system. Since this list of possible access types can be

quite extensive despite being needed only in rare circum-

stances, this violation of the principle of least privilege (Saltzer

and Schroeder, 1975) is highly undesirable.

A number of third-party vendors have therefore developed

software packages which allow the local (as well as centrally

administered) reconfiguration of group policies for device ac-

cess based on explicit requests and circumstantial informa-

tion (e.g. the use of a certified application requiring access to

a specific device interface, running under the account of

a user explicitly authorized to perform such operations).

This approach counters the threats described in Sections 3.1

and 3.2, to the extent this is possible without direct control

of both the application and the attached device, but is limited

in its effectiveness against the lower-level attack types also

discussed in Sections 3.3–3.5.

4.2. Dynamic device interface security

To remedy the remaining deficiencies in the approach de-

scribed above, it is necessary to modify the operating system

as briefly discussed in Section 2. The pertinent control and in-

formation flows are depicted schematically in Fig. 2 (Dekker

and Newcomer, 1999; Russinovich and Solomon, 2004).

Since the IRP mechanism generally does not carry informa-

tion as to the identity of the user causing the I/O request, it is

necessary to intercept the relevant I/O Manager data struc-

tures; this allows the back-tracking of the process owner (i.e.

generally either a system service or an application on behalf

of a user) and to inter-link the IRPs generated in the process.

At the same time it is also possible and desirable (if only for

performance reasons) to resolve the target device at the same

logical level; while the environmental subsystem and most of

the Windows kernel will operate on file handles, these need to

be resolved ultimately to device objects, which can be obtained

from the handles by way of the internal file objects, which refer

to driver objects. Several device objects can then be associated

with each driver object (i.e. a driver may serve more than one

device), so disambiguation, typically device- or bus-specific is

required on this level as well. While access control decisions

can be made at this level (e.g. regarding individual processes
and specific devices), the level of control is still too coarse

for a number of security objectives.

The additional interception mechanisms required to

regain full control over the operating system’s use and han-

dling of devices are shown in a shaded box in Fig. 2. Each inter-

cepted device driver’s components need to be filtered for

potentially malicious activity. This involves four main compo-

nents: the command to start a programmed I/O operation or

an interrupt service routine initiates an I/O request and will

typically require further processing. Some activity that is not

in accordance with active security policies can be terminated

or modified at this level (e.g. through plausibility checks for

parameters or back-links to user and process identification).

For more complex operations, however, it is also necessary

to monitor and intercept operations performed by device

drivers in their respective DPC processing. Finally, some func-

tions such as general housekeeping is typically handled by the

dispatch routines of the device driver; these may also require

interception. From the description above it should be obvious

that while some generic mechanisms for protecting and con-

trolling device drivers exist, finer-grained controls such as de-

tailed parameter validation are dependent on the drivers to be

protected.

In addition to device-specific drivers described above, it is

also necessary to intercept and filter the relevant bus drivers

(e.g. USB and IEEE 1394). While these drivers are typically pro-

vided by the operating system and of higher quality than some

third-party drivers, enforcing some aspects of security poli-

cies such as monitoring and eliminating malicious hand-

crafted protocol data units (PDUs) or filtering out the DMA

I/O System
Services

Native
Interface

IRP

I/O Manager

issues cal

ge
ne

ra
te

s

File Object Driver Object Device Object

Identification of responsible device object / driver

is
su

es

Intercept Device Driver

Dispatch
Routines

Start
I/O

Interrupt
Service
Routine

Dispatch
Routines

Start
I/O

Interrupt
Service
Routine

DPC
Routine

DPC
Routine

Original Device Driver

Direct forwarding
or IRP chaining

Policy
Mechanism

User Mode

Kernel Mode

Fig. 2 – Processing of device I/O.

i n f o r m a t i o n s e c u r i t y t e c h n i c a l r e p o r t 1 1 (2 0 0 6) 1 6 0 – 1 6 5 165
control PDUs must be accomplished at this level before the

data packets are handled by additional, higher-level device

drivers. This mechanism can also be used effectively to con-

trol configuration changes of the bus, preventing among other

effects, the commencement of Plug-and-Play activity.

Finally, another control that can be imposed (also at higher

levels described above) is precise access control based on de-

vice identity and characterization; in most modern interface

classes (excluding, e.g. legacy serial and parallel interfaces),

devices will identify themselves by providing at least a device

class (e.g. human interface devices), a vendor, and a product

identification. Some devices can also provide further informa-

tion such as a unique serial number (this is an optional ele-

ment, e.g. at the USB level, so it cannot be used for some

mandatory controls) and information on the capabilities pro-

vided (e.g. the profiles found in the Bluetooth protocol stack),

which may also factor in policy decisions.

Several commercial products exist that cover aspects of the

countermeasures described above, although no product cur-

rently coversallof theseelements (Wolthusen, 2003).Moreover,

effective protection requires not only the use of interception

mechanisms as described in this and the preceding section

but also must be configured and maintained to reflect the con-

figurations and security policies of a given organization, which

may call for considerable efforts to be expended.

5. Conclusions

This paper has briefly described several classes of threats and

risks associated with devices and device interfaces beyond the

network devices forming the focus of most security efforts.

The potential for damage must be considered significant for

environments in which subversion or the injection and re-

moval of data from computer systems exposed (even briefly)

to external individuals or to internal users wishing to subvert

systems or to gain unauthorized privileges. However, current

operating system protection mechanisms, particularly in the

Microsoft Windows family of operating systems do not
adequately allow the enforcement of security policies that

would mitigate these threats. We have therefore briefly

sketched the mechanisms which can be used by add-on

mechanisms to provide these added capabilities, some of

which can already be found in commercially available prod-

ucts, although several of the more intricate threats are not

yet addressed by these products.

Observations of the behavior of attackers in recent years

clearly demonstrate a migration to newer types of attacks

whenever the relative cost for detection and exploitation of

a class of vulnerabilities becomes unattractive. Attacks on

devices and device drivers are only beginning to draw the atten-

tion of attackers, and it is to be hoped that at least in this case

a widespread deployment of countermeasures can be achieved

before the attacks are in widespread and systematic use.

r e f e r e n c e s

Arce I. Bad peripherals. IEEE Security & Privacy 2005;3(1):70–3.
Dekker EN, Newcomer JM. Developing Windows NT device

drivers. Reading, MA, USA: Addison-Wesley; 1999.
Me G. Exploiting buffer overflows over Bluetooth: the BluePass

tool. In: Proceedings of the second IFIP international confer-
ence on wireless and optical communications networks
(WOCN 2005). Dubai, UAE: IFIP; March 2005. p. 66–70.

Oney W. Programming the Microsoft Windows driver model. 2nd
ed. Redmond, WA, USA: Microsoft Press; 2002.

Russinovich ME, Solomon DA. Microsoft Windows internals. 4th
ed. Redmond, WA, USA: Microsoft Press; 2004.

Saltzer JH, Schroeder MD. The protection of information in com-
puter systems. Proceedings of the IEEE 1975;63(9):1278–308.

Solomon DA, Russinovich ME. Inside Microsoft Windows 2000.
3rd ed. Redmond, WA, USA: Microsoft Press; 2000.

Susilo W. Securing handheld devices. In: Proceedings of the 10th
IEEE international conference on networks (ICON 2002). San
Diego, CA, USA: IEEE Press; August 2002. p. 349–54.

Wolthusen SD. Goalkeeper: close-in interface protection. In: Pro-
ceedings 19th annual computer security applications confer-
ence (ACSAC’03). Las Vegas, NV, USA: IEEE Press; December
2003. p. 334–41.

	Windows device interface security
	Introduction
	Microsoft Windows device interface architecture
	Threats
	Application control
	Identification and authentication
	Dynamic configuration
	Direct memory access
	Device driver quality

	Countermeasures
	Static device interface security
	Dynamic device interface security

	Conclusions
	References

