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Abstract— While dynamic content-based filtering mecha-
nisms for the identification of unsolicited commercial email
(UCE, or more commonly “spam”) have proven to be effec-
tive, these techniques require considerable computational
resources. It is therefore highly desirable to reduce the
number of emails that must be subjected to a content-based
analysis. In this paper, a number of efficient techniques
based on lower protocol level properties are analyzed using
a large real-world data set. We show that combinations of
several network-based filters can provide a computationally
efficient pre-filtering mechanism at acceptable false-positive
rates.

I. Introduction

Unsolicited commercial email (UCE, or “spam”) contin-
ues to threaten the viability of open electronic mail ser-
vices on the Internet. While a number of proposals that
would close off certain trustworthy user groups by restrict-
ing email exchanges to a closed group of email servers
or which would require some form of (micro-)payment to
ensure delivery, these approaches also can undermine the
open interconnection that was instrumental in establishing
Internet email [1], [2].

It is therefore necessary – at least in a short and medium
term approach – to continue with the deployment and en-
hancement of techniques for filtering UCE in such a way
that the the signal-to-noise ratio remains acceptable to
users while keeping misclassifications (i.e. both false pos-
itive and false negative classifications) to a minimum de-
spite the continued increase of UCE as a proportion of total
message traffic.

However, the problem of UCE volume is twofold: While
the primary objective of end users is the reduction of the
relative amount of UCE (i.e. to maximize the proportion of
legitimate emails to UCE), a major concern for system ad-
ministrators is the absolute volume of UCE and the compu-
tational, storage, and bandwidth requirements associated
with processing these messages.

While content-based filtering techniques provide very
high degrees of accuracy in both selectivity and specificity,
their computational complexity requires both considerable
resources and can easily become a source of delays or out-
right failure when overloaded by excessive message traffic.
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Therefore, it is highly desirable to limit the exposure of
content-based filtering mechanisms by imposing a layered
filtering architecture using an (computationally) efficient
pre-filtering mechanism or combination of such pre-filtering
mechanisms.

In this paper, a survey and analysis of filtering techniques
based on lower protocol level properties is therefore pre-
sented. To this end, section II discusses the experimental
setup used in gathering baseline data and also briefly covers
the main low-level and content-based filtering approaches.
Section III then provides an analysis of filtering sensitivity
and selectivity of each low-level technique while section IV
subsequently discusses the implications of these results for
optimized configuration of filtering mechanisms as well as
the limitations of the data set used. Finally, section V pro-
vides a brief overview over related work and analyses while
section VI describes ongoing and planned research in the
area of hybrid anti-spam filtering techniques.

II. Experiment

The results reported here were obtained by providing
a transparent filtering mechanism for incoming mail at a
small college (Gjøvik University College, Norway) with ap-
proximately 1600 students and 130 faculty and academic
staff for an extended period. During the 2005 and 2006
period investigated, monthly email traffic was consistently
in excess of 300’000 messages. The experiment proceeded
in two steps: An initial baseline data collection of messages
that were classified by humans as either spam or non-spam
and which is assumed to be an oracle function (i.e. the ex-
periment assumes that the human classifier does not make
mistakes, at least not at a statistically significant level)
for the baseline data set was collected by a filtering con-
figuration which intercepted all inbound message traffic.
The baseline data was then compared against the antispam
mechanisms under evaluation.

Moreover, the same filter system was subsequently (with
one exception, owing to the nature of the antispam mech-
anism) also used for collecting an additional large num-
ber of messages over an extended period of time, which
was used to compare the relative effectiveness of individual
antispam mechanisms and also of combinations of several
mechanisms.
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Column name Possible values
id unique ID
date when email first

seen
relay ip source IP address

for email
status human spam, non-spam,

dont know
status greylist spam, non-spam,

white-listed
status spamassassin decimal number
status rbl spamcop empty, in list
status rbl spamhaus empty, in list
status rbl ordb empty, in list
status rbl njabl empty, in list
status rbl sorbs empty, in list
status rbl dsbl list empty, in list
status rbl dsbl multihop empty, in list
status rbl dsbl unconfirmed empty, in list
status spf fail, pass, . . .
status domainkeys bad, good, . . .
status razor spam, non-spam
status dcc Message count
status bogofilter spam, non-spam

TABLE I

Column names and possible values of the result database.

A. Mail Server Filtering Configuration

Given that the data collection was to occur in an oper-
ational environment, particular attention had to be paid
to ensuring uninterrupted operation. By inserting the ex-
perimental mail server between the source network and the
regular mail server and forwarding duplicates of messages
to the regular mail server, it was possible to meet this re-
quirement (other than under extreme overload conditions
where delivery to the regular mail server was delayed).

The experimental server was configured to run the
GNU/Linux operating system and the Sendmail MTA
(Message Transfer Agent); Sendmail was configured to al-
ways queue incoming messages and operate on the queue
when server load was low (with the exception of greylisting,
see below and section II-C.1). This ensured timely deliv-
ery of messages to the regular mail server in real-time and
allowed for asynchronous forwarding to filtering modules
since this element of the experiment was not time-critical.

Results were collected in a PostgreSQL (an advanced
object-relational database management system, also run-
ning on the experimental server), see table I for a descrip-
tion of the fields used in this database (the notation “. . . ”
indicates values other than spam or non-spam are possi-
ble.).

To ensure comparable results for all filtering and coun-

termeasures, all methods were applied on the same mail
server configuration. The primary exception to this is the
greylisting process, which required timely responses.

B. Baseline Data

To ensure that the automatically collected data sets were
calibrated properly and to establish a baseline for the like-
lihood of a given message being unsolicited commercial
email, messages were intercepted and presented to humans
for inspection and classification both in 2005 and 2006.
The remainder of this paper assumes that these human
users can be considered as oracles and do not produce mis-
classifications.

To this end, volunteers conducted manual classification
of 2539 messages, resulting in a total of 1414 messages
(or 56%) classified as UCE. For the latest (February 2006)
monthly data set, a total of 164546 messages were collected,
while the total evaluation is based on a data set consisting
of 521010 messages.

The relative performance of the various efficient ap-
proaches and the benchmark content-based approaches de-
scribed in section II-C for baseline data is plotted in figure
3 (circular data points in viewgraph) while the dotted line
in figure 3 indicates the (oracle-classified) absolute propor-
tion of UCE of the baseline data.

C. Lower-Level Protocol Antispam Mechanisms

The following briefly discusses the selection of network-
based antispam mechanisms that were selected for evalu-
ation and analysis. While several other mechanisms ex-
ist, the following selection contains specimens that can fre-
quently be considered typical also for other mechanisms
that could not be included in the analysis.

C.1 Greylisting

Greylisting was conceived as a mixture of blacklisting
and whitelisting (see also section II-C.4) which can largely
be maintained automatically and which does not require
excessive human intervention [3]. To be effective, it must
be operational on all mail servers for a given domain.

The following three items are used by greylisting:
• The IP address of the host attempting the delivery
• The envelope sender address
• The envelope recipient address

The greylisting approach maintains a database of all such
unique 3-tuples it has encountered so far. If a tuple has not
been seen, delivery of a message falling under this tuple will
be refused with a temporary failure notice at the SMTP
level, and the temporary delivery failure will be repeated
for messages of the same 3-tuple received within a config-
urable time window. Since SMTP is a best effort protocol,
a conforming SMTP implementation must repeat delivery
attempts until either the message has been delivered or a
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threshold in the number of attempts or accumulated delay
has been reached.

Once a delivery attempt is made outside the greylist-
ing time window, the greylisting database is amended by
the 3-tuple as a legitimate communication event and sub-
sequent messages falling under this tuple are accepted and
forwarded immediately.

This technique imposes an additional workload on
senders by potentially requiring several initial delivery at-
tempts. However, while this cost is amortized over longer
message exchanges for legitimate traffic since such message
traffic typically exhbits a power-law probability densitiy
function [4], [5], this is not the case for senders of UCE.
The latter will – unless they have subverted systems run-
ning conforming MTA implementations – operate special-
ized programs that will send messages to legitimate or au-
tomatically generated email addresses directly to MX (mail
exchange) hosts and relays without accepting replies and
therefore also ignoring error messages induced by greylist-
ing.

C.2 Sender Policy Framework

The Sender Policy Framework (originally Sender Per-
mitted From) is conceptually based on constraining the set
of hosts accepted as mail originators as proposed by Miller
in 1998 and is one of several approaches in a family which
also includes the Sender ID proposal [6].

Within SPF, the return path of the message is compared
with the sender address and checks the IP address of the
sender against an SPF record for the domain stored in
the DNS (domain name system). Additional extensions
can validate several additional header lines using the PRA
(Purported Responsible Address) algorithm.

The standardization of proposals in this category has
been problematic since unresolved patent claims led to the
dissolution of the IETF MARID working group in 2004.
Moreover, acceptance of SPF by MX operators has been
limited. Given SPF’s dependency on widespread adoption
of SPF records, this slow adoption significantly affects the
overall effectiveness of the scheme.

C.3 DomainKeys / DKIM

DomainKeys has since been re-named Domain Keys
Identified Mail (DKIM) and has been submitted to IETF
for standardization [7]. In this scheme, the MTA of the
sender must sign critical elements (i.e. both several header
elements and body) of the message using a public key al-
gorithm, thereby not only ensuring authenticity but also
message integrity; the result is then added to the message
as an additional header as shown in the example below.

DomainKey-Signature: a=rsa-sha1; q=dns; c=nofws;
s=beta; d=gmail.com;
h=received:message-id:date:from:reply-to:to:
subject:mime-version:content-type:
c+ontent-transfer-encoding;

b=b1FKPFeCr0MO34uurDUwQwIgbkgd9dEpAnKblRw1mx
fq/l2grBtmpnY50Ue7UW8I0u5Kep31SbWrI+z1z8Lg
U7YZQyxpf54fY6TSWQA1CJrkh58sTATcdQeY+OXGZL
hEeeO4RwtQwY5rV68KHnCOotz59zAZo+u8TgJiBUqD
2+v4k=

All messages must be signed by the sending system, and
the public keys for verification of signatures must be dis-
tributed to possible recipients. As with SPF, this occurs
via an extension to the DNS record system. The DNS
must also contain a policy entry for specifying the extent
to which DKIM is used by the domain. Recipients can
then validate a message by checking that the sending do-
main signs all outgoing messages and reject any message
that is not signed outright. Only in cases where a signature
is present is the computation of the message hash value and
decryption by the recipient required.

To ensure that some legitimate processing such as for-
warding and rewriting that commonly occurs in case of
mail reflectors is not affected, these headers are not signed
whereas the signed fields are stated explicitly in the DKIM
header.

Other approaches in this category are the CLEAR (Com-
patible Low-Level Email Authentication and Responsi-
bility), CSV (Certified Server Validation), and BATV
(Bounce Address Tag Verification); these, however, were
not included in the experiment setup.

C.4 Real Time Blacklists

Real Time Black Lists (RBL) provide databases in which
hosts are recorded that are considered insecure (e.g. open
mail relays or proxies) or are known sources of excessive
amounts of UCE. To ensure that these rapidly changing
potential sources of UCE are identifiable immediately by
an MTA, the the databases are updated in near real-time
and also use the low-latency DNS protocol as the transport
mechanism for information on blacklisted hosts. For each
host from which an MTA receives an inbound email, the
RBL must be queried (causing an additional lookup using
the DNS protocol). The RBL database may both apply
a ruleset in determining to enrol a host in the blacklist
and can also indicate the confidence with which the RBL
classifies a given host as a source of UCE [8]. If the result
from the RBL exceeds a confidence threshold set by the
MTA, the message can be discarded.

Since RBL operate at the network level, there is a con-
siderable risk of servers being blacklisted even though only
a very limited fraction of the overall users or message traffic
is spam. This can lead to severe disruptions, particularly
for larger MX operators such as internet service providers.
Moreover, the RBL reporting mechanism can result in an
indirect denial of service by maliciously reporting a MX
host as a source of UCE.
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C.5 Razor

The Razor system by Prakash is based on a distributed
hash database over the actual content (body) of the email
messages processed [9], [10], while a mechanism simi-
lar to Razor was also described recently by Deepak and
Parameswaran [11]. The rationale behind this approach is
that some UCE will be sent out with identical content to
a large number of recipients, which can be identified and
hence filtered whereas legitimate message traffic will not ex-
hibit congruence with large numbers of messages observed
at other sites (with the exception e.g. of mail reflector
traffic). Within the Razor system, edge systems (typically
end users) collect hash values for messages received and
are forwarded to central repositories which can then also
be queried for matches against known UCE messages.

Given that cryptographic hash algorithms must produce
differing results for messages that are distinct even in a sin-
gle bit, circumvention of a näıve implementation is trivial
by simply inserting small random variations into the UCE
messages. To avoid this vulnerability, Razor uses a fuzzy
signature matching algorithm based on a statistical model
for messages [12], which is assumed to fulfill the following
criteria:

• The digest identifying each message should not vary sig-
nificantly for changes that can be produced automatically.
• The encoding must be robust against intentional attacks.
• The hash encoding should provide low risk of false posi-
tives.

As may be expected, however, there is a risk for the gen-
eration of false positives both owing to legitimate message
traffic patterns and limitations of the fuzzy hash algorithm
used. To remedy this problem, Razor requires feedback
from users on which messages to classify as spam and which
to whitelist.

C.6 Distributed Checksum Clearinghouse

The Distributed Checksum Clearinghouse (DCC) is
based on the same general principles of fuzzy distributed
hashing as Razor (see section II-C.5) and in fact uses the
same hashing algorithm [12], [13].

However, unlike Razor it does not depend on user feed-
back. Every MTA or MUA that is DCC-enabled forwards
messages it receives to DCC servers. The DCC servers then
determine the number of similar messages and returns this
count to the reporting system. A threshold value can then
be used to classify a message as bulk or spam email.

In addition to the problems identified in section II-C.5,
the DCC approach cannot identify legitimate bulk mes-
sages such as mail reflector or other solicited newsletter
traffic and must therefore be combined with white-listing
techniques or other approaches to avoid excessive false pos-
itive rates.

D. Content-Based Antispam Mechanisms

As a control, a content-based mechanism was also in-
cluded in the experiment; the control selected for use in
direct comparison was the widely used Spam Assassin pack-
age.

D.1 Spam Assassin

Spam Assassin considers both header and message body
data in its calculations to determine the probability that a
given message is to be considered UCE [14]. To this end,
it applies a large set of rules, typically consisting of regular
expression filters, to header and body material, and as-
signs a score to each rule (e.g. a message body containing
a stock alert would add 2.362 points to the total sum while
a message also containing the word “free” in the From ad-
dress would add 0.194 points). The sum over all matching
rules results in the total score or confidence value; if this
exceeds a threhold, the message can be rewritten either by
adding a header containing the score or by encapsulating
the message in another MIME wrapper.

While Spam Assassin also supports DNS and checksum
filters, these were not activated in the course of the exper-
iment as these would replicate the behavior of systems de-
scribed in sections II-C.4, II-C.5, and II-C.6, respectively.
Moreover, Spam Assassin also supports Bayesian filtering,
which provides a machine learning mechanism for classify-
ing messages as UCE. Since this also requires continuous
feedback and the use of training data sets, this feature was
also not used for the purposes of the experiment.

III. Results

The effectiveness of the mechanisms used when viewed
individually differs significantly. Figure 1 shows the false
positive classifications when measured against the base-
line data only, while figure 2 identifies the corresponding
false negative classifications for each individual classifica-
tion mechanism (note the different scales for each of these
cases).

Both figures 1 and 2 were obtained by using the pre-
viously described metrics over the baseline data set; the
validity of these measurements can best be compared to
the oracle data obtained for the baseline data set; figure 3
provides an overview of the deviations in the detected and
predicted classification results.

Figure 4 provides a direct comparison of content-based
filtering using the SpamAssassin system at varying thresh-
olds (see section II-D.1) with a combination of the black-
listing approaches, the greylisting, and the Razor dis-
tributed checksum mechanism. As can be seen in figure
4 when compared to the expected proportion of UCE mes-
sages, a threshold between 5 and 8 for SpamAssassin is the
maximum sensitivity desirable before the selectivity of this
approach suffers. For comparison, figure 5 illustrates the
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Fig. 1. Comparing false positive spam detection rates
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Fig. 2. Comparing false negative spam detection rates

intrinsic tradeoffs encountered with setting thresholds on
the experimental data set.

Finally, figure 6 provides a visual comparison of the re-
ceiver operating characteristics of the SpamAssassin classi-
fication mechanisms when varying the decision point [15],
[16].

IV. Discussion

While the proportion of UCE messages reported in figure
3 is significantly lower than what has been reported earlier
(see section V), it still constitutes more than half of the
total message load handled by the electronic mail system.

The black-listing (RBL) mechanism is highly sensitive
to the quality of maintenance and the aggressiveness of
adding entries to the respective black lists, resulting in a
more than 300% difference in both detection and also in
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the false-positive regimen.
The low detection rates shown for the SPF mechanism in

figure 3 can, at the time of writing, be mainly attributed to
the limited deployment of SPF. Given that SPF requires co-
operation among sending entities and cannot make unilat-
eral decisions, this approach may not become more promi-
nent owing to a vicious circle of limited attractiveness to
MTA operators while acceptance by MTA operators is still
low.

The attractiveness of distributed checksum mechanisms,
which show an attractive proportion of UCE messages clas-
sified positively, is somewhat hampered by the relatively
high false-positive rate, which is particularly problematic
for a multi-stage UCE filtering mechanism.

While greylisting proves to be highly attractive in terms
of the classification results obtained, the use of greylisting
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Fig. 6. Receiver Operating Characteristic (ROC) curves for the
SpamAssassin classification mechanism

is at least somewhat controversial. The primary reason for
this is the additional load on the sending MTA systems
required for multiple communication attempts in case no
previous listing exists. Even though (as discussed in section
II-C.1) individual communication graphs appear to follow
a power-law distribution resulting in a relatively small total
burden for first attempts at communication between par-
ties, the imposition of additional messaging requirements
is undesirable. Moreover, given greylisting’s requirement
for compliance to SMTP standard on the part of all send-
ing MTAs, this behavior may exclude certain systems (e.g.
MTAs with only intermittent connectivity) from communi-
cation or at least impose significant delays owing to further
communication delays.

V. Related Work

The relative effectiveness of using simple black listing
over time was investigated by Jung and Sit [17], who also
compared longer-term developments while Schryen pro-
vides a formal model for spam delivery and defensive op-
tions [18].

Any new approach or combination of techniques must be
measured against both the regular (legitimate) patterns for
email traffic and the techniques applied by senders of UCE.
Particularly the latter can change rapidly in response to
countermeasures and must therefore be taken into account
dynamically in the development and analysis of antispam
techniques. Key metrics in this assesment and development
process are factors such as the mail arrival process, email
sizes, number of recipients per email, popularity, and tem-
poral locality among recipients [19]. Siponen and Stucke
provide a quantitative assessment of email traffic and UCE
proportion for inbound messages in a large number of cor-
porations [20].

A selection of individual detection techniques (RBLs,
phrase matching, SA heuristics, and statistical metrics)
was investigated within the context of a larger Inter-
net service provider by Sergeant [21], analyzing both the
sensitivity and selectivity of these techniques while Bal-
vanz et al. conducted a somewhat informal evaluation
which also included end-user oriented systems [22]. A de-
tailed evaluation of cost aspects for statistical approaches
was conducted by Gómez Hidalgo [23] while Zhang et al.
conducted an analysis of statistical mechanisms includ-
ing naive bayes, maximum entropy model, memory based
learning, support vector machine and boosted approaches
both for English and Chinese corpora [24].

VI. Conclusion

Efficient antispam techniques continue to play a vital
role in ensuring the continued viability of one of the most
important forms of electronic communication and must be
continuously monitored for effectiveness to permit timely
responses to new tactics by UCE originators. While elab-
orate content-based filtering mechanisms provide excellent
classification results, such filters also consume considerable
resources and can therefore not be used indiscriminately
for cost and capacity reasons.

The antispam methods analyzed in this paper provide a
useful first filtering step when either used individually or
in some cases also in combination with one another and
thereby reduce the workload imposed on a content-based
filtering mechanism. The principal mechanisms analyzed in
the experiment detected between 37% and 75% of putative
UCE as predicted by the baseline analysis when applied
individually. These mechanisms also provided a very low
false positive rate, particularly when compared to machine
learning approaches; given that in some jurisdictions the
suppression of legitimate message traffic can be a crimi-
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nal offense, this provides assurance that these techniques
can be used without undue risk of rejecting legitimate mes-
sages.

Given the relatively low individual probability rates, it is
desirable to combine several of the mechanisms discussed
in this paper in a first stage. Depending on the acceptable
network and computational load, such a combination could
include greylisting, hash databases such as Razor, and real-
time blacklisting. A second stage should then incorporate
content-based mechanisms such as machine learning and
feedback mechanisms to further enhance selectivity and
sensitivity.

At the time of measurement, an effective and efficient
combination of such pre-filters is constituted by the use of
both greylisting and a combination of several black-listing
services. It should be noted, however, that the relative ef-
ficiency of the RBL services is dependent on the constant
maintenance and quality of data used in maintaining the
RBL databases and may therefore change significantly over
time. These mechanisms provide an adequate balance in
their receiver operating characteristic and can therefore re-
duce the load on a secondary spam filtering mechanism
significantly.

As has been demonstrated before [17], the analysis re-
ported in this paper can only identify approaches that are
effective for a limited duration in time as both UCE senders
change tactics and the relative effectiveness of approaches
change, e.g. by revisions to distributed checksum databases
or maintenance issues with real-time blacklists. Over the
period reported here (2005 through early 2006), these re-
sults were quite stable; however, it is neverthelesss im-
portant to reiterate these experiments and also to include
newer and emerging approaches; the latter is of particular
importance since the effectiveness of the SPF framework
could not be conclusively established given the rather low
number of sites operating this scheme.

Future research will be directed to providing quantita-
tive metrics for the relative efficiency (particularly compu-
tational and memory efficiency) of these approaches; this
can provide the basis for deciding on a multi-tier antispam
architecture in cases where the distinction between the var-
ious approaches is less clear than given the present data.
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