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Layered multipoint network defense and
security policy enforcement
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Abstract— This paper discusses the enhancement of secu-
rity in general purpose operating systems, especially related
to threats caused by internetworking, using extensions to
operating systems. Such mechanisms have a significantly
larger basis for reaching security policy decisions than older
host-level security mechanisms and firewalls. By layering
defensive mechanisms yet enforcing a consistent security
policy across the security layers, goals such as workload dis-
tribution, vulnerability compartmentalization, and hierar-
chical refinement of security policies can be achieved.
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I. Introduction

Internetworking computers and virtually any electronic
device has become a largely unquestioned trend. Together
with an ever-increasing reliance on such networks concomi-
tant with a rise in the sensitivity of the data and applica-
tions used on them, this results in a sizable need for en-
forcing security and integrity requirements.

However, current COTS systems from operating systems
to network firewalls do not fulfill these requirements or have
been slow to react to a changing threat environment. In
addition, while many applications now are network-aware,
security is in many cases not integrated effectively.

While it would be desirable to perform a thorough review
of security requirements in light of this changed enviroment
and to create a set of mechanisms embedded into the en-
tire infrastructure to meet these, such an approach is not
viable mainly due to the large investments already in place
in existing IT systems and the need for a homogeneous en-
vironment. This is reflected in the limited appeal of such
attempts performed thus far [1].

What is apparently called for is a pragmatic mechanism
to meet or at least partially address these requirements
while retaining compatibility with existing systems. This
can be achieved by retrofitting the necessary mechanisms
to COTS software systems if one is willing to accept limi-
tations in terms of overall assurance.

The main challenges here are that any such mechanism
must be workable across node and system platform bound-
aries to realize a comprehensive security mechanism in an
internetworked heterogeneous system, and that the secu-
rity mechanisms must not necessitate changes to applica-
tion programs by breaking the existing expected system
behavior in an egregious way other than where explicitly
required for security reasons that are to be specified in a
separately defined policy. Finally, such a mechanism should
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also be as transparent to users as possible as long as they
do not violate the security policy in effect.

The first item is an obvious requirement; any non-trivial
network will be heterogeneous in nature. The second re-
quirement derives from the observation that it is very dif-
ficult to modify any application program typically because
it is also a COTS product, or because any modification to
custom applications would require major investments even
if such a move were contemplated.

Another criterion in the design of the mechanisms de-
scribed here is that they must be completely neutral re-
garding the policy that is to be enforced.

II. Threat Environment

Most networks today are segregated into internal levels
of various trust levels and the outside world. Protection of
the individual layers occurs using firewalls or guard mech-
anisms. These mechanisms rely on several assumptions,
typically tacit, for their validity:
• The internal (protected) network is trustworthy
• There is a meaningful distinction between internal and
external networks
• Attacks are initiated from external hosts directed at in-
ternal networks
• The syntax and semantics of the protocols used are
known
• Code passing through a firewall is executed with the con-
sent of a user.

While all of these assumptions were true at some point
and are reflected in the design of firewalling mechanisms,
most of them gradually lost their validity at some point in
time; any new mechanism for countering the current threat
environment may no longer make use of them. This section
highlights some of the threats that need to be countered.

A. Mobile Devices and Remote Access

The topology of a network can no longer be used as the
linchpin of its security [2]. Bellovin discussed this mainly
in terms of performance [3], but network structures includ-
ing mobile devices and remote access solutions render this
if not obsolete then at least secondary. It must be assumed
that a mobile device may, possibly using a transitive and
therefore unanticipated network connection, contact sen-
sitive network nodes. A similar scenario results if a user
has established a remote access connection to a protected
network and also has for some reason or accidentally es-
tablished another network connection, possibly opening a
routable connection to the Internet bypassing all protection
and auditing mechanisms in the process.
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B. Mobile Code

Many current applications include scripting mechanisms
of varying levels of expressiveness; in addition, mechanisms
such as Sun’s Java or Microsoft’s ActiveX permit the trans-
mission and execution of full applications. While most of
these mechanisms contain security mechanisms, the track
record in using these is not encouraging if only because
deactivating the macro language mechanisms would ren-
der some documents unusable. A threat assessment must
therefore assume that malicious code can reach a sensitive
network node.

Trojan horses of various levels of intricacy are another
threat that can be classified as mobile code; given that
the execution of such code is frequently caused by a social
factor, technical means probably cannot fully prevent such
infiltration of sensitive nodes.

C. Tunneling Mechanisms

A number of application programs can transmit data and
instructions across transmission channels designed for dif-
ferent purposes. In some cases, this is done surreptitiously
by application programs, in other cases the tunneling oc-
curs deliberately. The most notable recent example for
such a mechanism is the SOAP[4], following similar earlier
developments in the CORBA area. In both cases exposed
application interfaces are called without intervening secu-
rity mechanisms. The entire responsibility for security is
placed on the developers of the thus exposed applications
and their protocols. Even advanced application-level fire-
walls can not necessarily detect such mechanisms since the
tunneled data conforms to the syntax of the “host” proto-
col except by resorting to ad-hoc detection schemes.

D. Application Complexity

Even a simple WWW application today typically in-
volves a complex set of protocols and applications rang-
ing from advanced HTML parsers and display engines –
which themselves may be vulnerable – to JavaScript and
may involve implicit operations and code execution on a
client. Very little of this is perceived consciously by a user
or can even be controlled at any meaningful level of gran-
ularity. Distinguishing deliberate actions on the part of
the user from implicit operations due to application be-
havior or malicious operations resulting from mobile code
(see section II-B) represents a considerable difficulty. This
limits the effectiveness of most reactive intrusion detection
systems [5], [6]. A related problem occurs when trying
to specify permitted application behavior for intrusion de-
tection mechanisms. Full specifications of generic COTS
or even reasonably complex custom applications are very
hard to obtain. Linking permitted operations on the part
of either a user or of the application to observed behavior
by the application will therefore frequently have to resort
to heuristics or imprecise specifications. In doing so one
is confronted with missing significant events or having to
accept a considerable false-positive frequency [7].

III. Centralized Security Policy

Even though several of the threats outlined in section II
are distributed in nature, any meaningful security policy
must at least define a baseline for an organization that
is valid for all nodes in such a network. When referring
to the term security policy we here restrict ourselves to a
definition that includes only rules that may be enforced
by technical means. Items covered by such rules include
any operations performed by users, applications acting on
behalf of users, or of the node itself. Wherever possible,
a security mechanism must attempt to tie such operations
to the highest-level principals that can be detected, ideally
individual users.

While this paper considers mainly the networking as-
pects of such an approach, it is obvious that the mechanism
is general in applicability. We do not describe a specific se-
curity policy in this paper; the mechanisms described here
are agnostic in this regard. However, we propose to use
a role-based access control mechanism extended with addi-
tional rules regarding behavior of principals and operations
on objects for this purpose. This allows the modeling of
both simple discretionary policies as well as more stringent
lattice-based models.

A. Decentralized Enforcement

The principle of separating security policy from its en-
forcement is now generally accepted [8]. While originally
intended for use inside an individual node, we propose to
use the same principle across a distributed system. En-
forcement is to be performed at the operating system level
of each individual node, based on decisions either related to
the enforcement subsystem directly from a node distribut-
ing policy data and decisions or as a result of a delegated
derived security policy.

This separation of concern between end nodes enforcing
security policy and nodes controlling policy data can be
performed using externally controlled reference monitors
(ECRM). Using a proper balance between centralized de-
cisions and locally delegated security policies, the overall
network load – which is limited by latency, not bandwidth
– can be kept at an acceptable level.

The ECRM mechanism is based on the segregation of
policy decisions from enforcement by splitting the reference
monitor into local node components (ECRM) and external
policy repositories or external reference monitors (ERM),
both of which can be confined to a secure coprocessor con-
taining sensitive mechanisms. The ERM nodes contain se-
curity policy data for which they are either authoritative or
acting as a cache instance. Using a suitable policy reconcil-
iation mechanism, the handling of operations involing sub-
jects and objects from multiple security policy domains can
be resolved. The communication between an ECRM and
an ERM may involve individual decisions such as grant-
ing read access to a data object which is valid only for the
single instance it was requested or it may result in tem-
porary local delegation of a derived subset of the security
policy depending on the type of access and the capabilities
identified (see section IV-B).
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Not all decisions and enforcement mechanisms can be im-
plemented effectively inside the ECRM, particularly when
the mechanism was retrofitted onto an existing operating
system; in other instances it is necessary for performance
reasons to further delegate policy decisions (still derived
from the central policy and interpreted by the ECRM) to
individual modules inside the system. While this affects the
assurance that can be obtained it does not, in our opinion,
invalidate the ECRM mechanism in itself.

Details on the externally controlled reference monitor
mechanism can be found in [9].

B. Hierarchical Refinement

An organization’s baseline policy may be refined hierar-
chically where subordinate policies may only place addi-
tional restrictions onto the rule base.

Where principals and objects of different organizations
overlap, a policy reconciliation mechanism is typically re-
quired to resolve the conflicting individual rules applied
to these principals and objects. The reconciliation policy
must be defined by the respective security administrators
involved.

The overall policy set must be enforced consistently
across the entire distributed system. When tying policy
rules to high-level entities this implies that any entity per-
forming such decisions or operations must be aware of the
unified set of policy rules. If one accepts the possibility
of propagation delays, this permits the keeping of both
caches and localized security policy rule bases. The extent
of propagation delays can be regulated by means of specify-
ing a lifetime with each rule after which the policy element
originator must be consulted.

IV. Node-Internal Layering

The defensive posture inside an individual node must
should multi-layered. The term “layering” here refers
mainly to a layering of abstraction layers to be protected;
an actual implementation will usually involve several coop-
erating and intermeshing components at different levels of
an operating system.

In designing such a mechanism, the issues outlined in
section II need to be taken into consideration. To per-
mit a basic protection mechanism, an outer layer of coarse
granularity – in the interest of limiting minimum policy
complexity – is necessary that surrounds the entire node.
This implies all inputs and output that is handled by a
node, including network traffic and file systems.

The general mechanism is to embed low-level security
mechanisms that catch all I/O traffic and serve as basic
protection. At other levels within the operating system,
higher layer protocols are also instrumented. These layers
must then cooperate for two purposes. First, the neces-
sary information regarding the participating subjects and
objects as well as the intended operations is typically dis-
persed through several data structures within an operating
system and must be consolidated in any case before a deci-
sion regarding security policy rules can be made. Secondly,
if a security policy rule exists for a higher-level protocol and

a protocol data unit can be identified as belonging to such a
transaction, the lower-level mechanisms must defer to such
a decision.

The mechanism outlined above requires a security policy
that is structured in such a way that lower-level protocols
start with a default-deny stance and progressive relaxation
occurs for specific instances that are identified as necessary
operations involving authorized principals according to the
risk analysis that preceded the definition of the security
policy.

One implication of such a mechanism is that any secu-
rity policy rule that is either not within the capabilities
of a given node can therefore be covered by a lower-level
protection layer. It is important to note, however, that the
protection is provided only if the security policy itself is
consistent with the construction rule outlined above.

A. State-Based Policy Decisions

The mechanisms described here are required to interact
on an implementation level; additional benefits can also
be derived from logically consolidating the information ob-
tained from the various layers and using them as decision
data points for a security policy rule.

To support this, the security policy specification mech-
anism must provide support for specifying sequences and
decision trees.

The main difficulties with using such mechanisms are
again in the overhead that is created by enforcing such
rules and in the need for specifying meaningful rule sets in
the first place. We therefore assume that the application of
state-based policy decision mechanisms will be limited to
a small number of well-defined critical application areas.

B. Layer Capabilities

We assume that the system described here will evolve
over time by adding additional layers and protocols to its
suite of supported mechanisms. The only requirement is
that the most fundamental layers (described in sections
IV-C, IV-D, and IV-E) are present.

Since the performance impact caused by having to con-
sult a security policy for matching rules can be considerable
if the rule base is too complex, a simple optimization for
an ECRM is to provide the ERM with a capability vector
in issuing a request for a local policy delegation (in case
of an immediate policy decision request this optimization
is irrelevant). The capability vector, issued by the trusted
ECRM subsystem, identifies the protection layers that are
implemented in the node issuing the request.

If supported by security policy specification language,
the policy itself may also contain rules regarding specific
capability implementations (or assurance levels) such as the
presence of an ECRM implemented by means of a secure
coprocessor and e.g. their influence on granting access to
certain data.

C. Device Interface Layer

The lowest layer of protection mechanisms involve access
control to the interfaces such as e.g. network interfaces, se-
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rial communication lines, and SCSI interfaces. At least for
some of these interfaces, current operating systems provide
such services; they simply must be placed under the con-
trol of the centralized security policy enforcement. The
level of control is typically at the level of the principal in
the system security concept. We can extend this mecha-
nism by employing a finer granularity access control mech-
anism identifying additional subjects such as application
programs; this is elaborated below. Both application pro-
grams and users need not be aware of such an extension
since the mechanisms for reporting access violations pro-
vided by the host operating system can be used to report
violations of such fine-grained access violations.

A secondary protection mechanism beyond access con-
trol involves services for confidentiality, integrity, and au-
thenticity including end-point authentication. This cannot
be used at the most basic protection layer since the neces-
sary features are not always present. An example of such
a situation is a modem attached to a serial port. In this
case, the only control mechanism at the interface level is
the verification of compliance with the security policy if a
set of subjects and a set of objects wishes to exchange data
with such a device, resulting in access being simply either
granted or denied at this level. If a protected and identified
higher-level protocol is used, however, this can override the
basic protection.

The distinction between the device interface layer and
higher layers, particularly the network protocol layer is be-
coming less clear with plug-and-play interfaces that imply
operations initiated by devices or hosts other than the local
node. In such cases mechanisms analog to those discussed
in the following section are required.

D. Network Protocol Layer

Even though there are some application areas where
other protocols are still used and which need to be dealt
with separately, the Internet Protocol is by far the domi-
nant protocol and the focus of our considerations.

The implementation of the Network Protocol Layer is
highly performance sensitive and requires a tight integra-
tion of all components to reduce critical code path lengths.
However, for the purposes of the description here we iden-
tify individual functional components as an in itself layered
architecture.

All components described here are subject to the global
organizational security policy as described in section III-A.

Since we assume that a node may operate in an ex-
posed environment and that the network protocol stack
of a node’s host operating system may not be able to deal
with malformed protocol data units (PDU) or sequences
of PDUs, a first layer of protection from external nodes
(regardless of whether they are part of a protected envi-
ronment) is required that performs integrity checking on
incoming and outgoing data and ensures that any and all
PDUs passed on to the host network stack can be handled
by it.

Another role that must be assumed by the Network Pro-
tocol Layer is basic packet filtering and circuit-level con-

trol. This applies to both incoming and outgoing traffic
and must be coordinated with other components within its
own layer as well as with other layers. As many policy rules
as possible must be formulated in a way that they can be
dealt with at the component level.

In cases where the security policy requires confidentiality,
integrity, and authenticity at the circuit level, this must
be assured in this layer as well. The obvious choice of
technology for such requirements is IPSEC [10] since it is
part of IPv6 and provides the necessary features already
either by itself or lends itself to straightforward extension;
it is also an already widely accepted IETF standard. This
also permits the use of such features when communicating
with nodes that are not equipped with the mechanisms
described here.

Actual benefits as compared to other security mecha-
nisms besides enforcing a consistent security policy across
all nodes belonging to a central authority result from the
integration of information derived from other areas of the
system.

By identifying the subject performing an operation in-
volving the network layer (which, depending on the host
operating system may be either derived from information
available in the local layer or from the system call layer)
we can enforce security policy rules at a much higher level
of abstraction. Similary, the identity of the process per-
forming the operation can be traced back with the help of
other subsystems and can be related to the identity of an
application or system service that is performing the oper-
ation.

This permits the specification of policy rules that iden-
tify which users may use which application programs to
communicate; in addition, the set of nodes with which com-
munication may be established can be restricted based on
various factors including temporal restrictions. This mech-
anism is more coarse-grained than that proposed by Ko et
al. [7], but also restricts the policy specification to a more
manageable size.

We can achieve further benefits by employing a small
modification to IPSEC, namely positive identification and
authentication of peer nodes. For this to work, each node
must be identified by a certificate. The certificate must
be issued by a certification authority that is contained in
a security policy that needs to decide the permissibility
of a connection to a peer. Such a mechanism interacts
closely with the general packet and circuit filtering dis-
cussed above; in cases where the peer also has an ECRM,
the certificate should contain the same (node) subject name
for the sake of simplifying policy rules; if the IPSEC im-
plementation is not embedded within the ECRM, a second
key pair for the IPSEC mechanism is required since the lat-
ter may be compromised by external manipulation of the
node.

This also permits the enforcement of policy rules requir-
ing certified peer nodes; if a peer node is compromised,
the node’s certificate can be placed on a certificate revoca-
tion list, limiting at least the potential exposure of other
nodes after the detection and blacklisting of the compro-
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mised node.
One disadvantage in requiring positive peer identification

and using other features of IPSEC is that it makes the in-
tegration of proxies, network translation devices, and other
intermediate nodes that modify data streams hard or im-
possible. This is intentional, but may require considerable
changes to existing network infrastructures.

A final sublayer in the Network Protocol Layer can then
optionally perform operations typically reserved for such
intermediate nodes such as transformations of data before
reaching an application (e.g. decryption of data that was
stored in encrypted form on an external server) or per-
forming virus scanning. This applies to both incoming and
outgoing data streams, but is most relevant for incoming
streams. Other than the earlier sublayers, this sublayer is
not necessarily fully transparent since it may induce no-
ticeable changes in e.g. the traffic pattern observed by an
application.

E. File System Layer

The role of a file system level protection mechanism in
a network security context may not be entirely obvious;
however, when seen from the perspective of enforcing an
overall security policy which will deal with data objects and
applications, it becomes a focal point of policy enforcement.

This layer has two main purposes. One is to provide
security mechanisms at the file system level in its own right,
the other is as an information source for policy decisions
that involve other layers. Here we are mainly concerned
with the second role; however, the first one is a necessary
element in overall security policy enforcement and therefore
must also be dealt with.

Security at the file system level is part of the basic secu-
rity functionality provided by virtually all general-purpose
operating systems. However, there are two deficiencies that
need to be remedied. First is the lack of conformance to
a consistent, centrally enforced security policy. Even in
networked environments, such controls are honored only in
largely homogeneous areas. Another issue is the need for
protecting data once it has left the immediate control of a
node’s operating system. This can generally occur in two
ways. One is by accessing the storage media locally with an
operating system other than the one enforcing the security
mechanisms (possibly just another instance of the same
operating system, only configured differently), the other
occurs when the storage media are exposed. While the lat-
ter threat has always existed in case of removable media
or exposure of portable systems, this scenario is becoming
more urgent as technologies such as network-attached stor-
age and storage-area networks become more prevalent. The
key problem in both cases is that the previous assumption
that the storage medium and path to the node providing
security enforcement is secure is no longer valid. What is
therefore required is an encryption mechanism operating
at the file system layer which transparently protects what-
ever storage medium or mechanism is employed. Trans-
parent encryption at the file system layer also deals with
the problem of accessing the storage medium from another

operating system or an access method that does not honor
the security policy.

As noted in section IV-D, the file system layer has ac-
cess to other important information. This information cor-
relates users and files they are using. We need to distin-
guish three types of files. The first type of file is the ex-
ecutable file as seen by the operating system. Such exe-
cutables, which usually consist of several parts (a main file
and a number of dynamically loaded shared objects or dy-
namically linked libraries), can be identified and matched
against security policy rules containing approved applica-
tions. The second type of file is harder to identify when
located at the file (operating) system layer and involves all
scripting languages, i.e. mechanisms that involve files clas-
sified as non-executable by the operating system but exe-
cuted by an intermediate application program. This class
of applications includes macro languages found in many
applications and has been the source of a large number
of successful attacks. Here only heuristics and elaborate
checks can attempt to identify and protect against mali-
cious code. The third type of file consists of plain data
objects. As outlined in [9] this requires a certain overhead
in the form of a labeling mechanism that is transparent
to the host operating system yet enforced across heteroge-
neous environments.

As indicated above, this information can be combined
with other information collected at different layers. In par-
ticular, the integration of the file system layer permits the
dynamic “sandboxing” of applications.

One example of such sandboxing in case of a MLS-like
policy is the dynamic restriction of a process from making
certain network connections once it has accessed a data
object whose classification label does not match with the
classification of a given network peer. The same mechanism
obviously also is applicable to operations within the node
local file system and can be used to implement a purely
local MLS configuration. In most cases, however, caching
and common networked file systems will require coordina-
tion of policy across node boundaries.

Finally, similar to the topmost sublayer described in sec-
tion IV-D, it is also possible to embed additional trans-
formations into the file system access mechanisms. One
example of such a transform would be a virus scan (which
can easily be extended to other types of undesirable files or
contents; the main issues here are in determining what level
of checking constitutes anacceptable performance impact,
and that any such blacklisting is by necessity incomplete
even when heuristics are used since we have to assume that
a potential attacker is aware of the heuristics).

F. System Call Layer

Unlike in the design by Fraser et al. [11], the system call
layer is merely an ancilliary layer instead of the focal point
of embedding additional security.

Depending on the host operating system (mainly under
Unix derivatives) it is necessary to insert code that triggers
the other layers discussed above. In other instances it is
desirable to block or modify the behavior of certain system
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calls; but this should be a method of last resort since it
violates the transparency sought after in the design of the
entire mechanism and requires a level of complexity in the
security policy specification that is difficult to administer.
If and when they are employed as independent enforcement
tools, they are subject to the same policy mechanisms dis-
cussed above and need to interact with other layers to ob-
tain the necessary information for forming policy decision
queries to the ECRM.

V. External Layering and Legacy Nodes

Besides layering abstractions, a secondary layering mech-
anism is required that may also be defined as a defense-in-
depth posture.

Even though the mechanisms described here apply to
most reasonably modern operating systems, there are some
nodes that can not or may not be modified to include these
mechanisms. These are typically legacy systems or single-
purpose devices such as network printers.

Such nodes require the protection of a conventional fire-
wall or a node equipped with the mechanisms described
here acting as such. This should be an acceptable situa-
tion as both the limited number and protection require-
ments of such nodes permits protection by topologically
oriented firewalls and a binary approach to filtering net-
work traffic. In case such a node requires more elaborate
granularity of control, an alternate approach to modifying
the legacy node itself is to construct a wrapper consisting
only of a node with the mechanisms described here acting
as a gatekeeper to the legacy node. In this case, adequate
physical protection of the thus generated composite must
be assured.

Topological separation is by no means completely obso-
lete; wherever possible, a compartmentalization of a net-
work should be performed along organizational lines as
well as along the network topology. This provides protec-
tion against disasters in individual compartments as well
as against resource exhaustion attacks targeted at the net-
work infrastructure; obviously the latter protects only the
operational characteristics of the internal node, external
communication may be denied by such attacks.

One additional requirement that must be satisfied is that
as a minimum communication from ECRM nodes to an
ERM must be guaranteed in case policy updates or im-
mediate policy decisions are required. To avoid denial of
service attacks as much as possible, this necessitates a topo-
logical arrangement that ensures a route that is not subject
to attacks is present for all ECRM-controlled nodes.

VI. Implementation

The segregation of policy enforcement at the various in-
terface layers from decision processes on end nodes is dis-
cussed in [9]; the ERM/ECRM core itself is platform--
independent. The focus of this discussion is on the en-
forcement mechanisms themselves.

The first challenge in implementing the enforcement
modules lies in identifying suitable interfaces within the
host operating systems that are present – if possible – in

all operating system families, and that do not undergo sig-
nificant changes between revisions of the various host op-
erating systems.

Another requirement is that such interfaces must be
modular. Source code to targeted host operating systems is
not always available; in addition, embedding modifications
at the source level implies additional complexity in spec-
ification and testing of the host operating system. Even
if source code is available, this mechanism allows embed-
ding of security features transparent to the host operating
system and is therefore in itself desirable.

We have so far concentrated on the Unix family of oper-
ating systems, in particular on derivatives of Unix System
V Release 4, as well as on the Microsoft Windows NT fam-
ily which includes the Windows 2000 and XP releases.

Cursory examinations have shown that similar mecha-
nisms can also be implemented on other Unix-derived fam-
ilies such as BSD Unix, Mach, and Linux as well as other
operating system families such as OpenVMS.

A. Microsoft Windows NT

The kernel and device driver level in the Windows NT
operating system family is based on an asynchronous pro-
cessing model and, at least in this regard, has a passing
semblance to OpenVMS [12], [13], [14].

The basic units for individual operations are I/O request
packets (IRPs). They contain the necessary information for
the processing of an operation (which need not be related
to I/O) and are passed between the modules inside the
kernel.

The kernel is structured in a way that an I/O request
is not handled by a monolithic module but rather by a
sequence of drivers that assume responsibility for certain
aspects of a request. There are explicit mechanisms for the
insertion of additional kernel modules, called filter drivers,
into this stack which can change, augment, or replace ex-
isting behavior.

A.1 Device Interface Layer

In many cases Windows NT separates the handling of de-
vices into several distinct drivers. At the lowest level there
are bus drivers that handle bus (e.g. PCI, USB) operations;
these are of limited interest. Layered on top of these are
function drivers that deal with individual devices, typically
accessing the device hardware in the process. It is on top
of these function drivers that a filter driver can be placed
since this permits abstraction from any specific hardware.
Examples of checks performed at this level would be the
blocking of adding new devices to an USB or IEEE1394
bus that is not part of the approved system configuration.
Beyond access decisions the role of this layer is limited by
the amount of semantic information available.

A.2 Network Protocol Layer

Windows NT implements a number of networking pro-
tocols; handling of these protocols is dispersed through
several layers which must be instrumented to obtain all
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necessary information. Most operations, including the in-
sertion of IPSEC and firewalling, can occur at the trans-
port driver interface (TDI) layer. This needs to be per-
formed for all network protocols that have to be supported
(e.g. IP, DECNet). However, not all information necessary
for higher-level processing is present at the TDI transport
level. For this it is necessary to insert another mechanism
at the WinSock level, namely a WinSock layered service
provider. Details on this mechanism are discussed in [15].

A.3 File System Layer

The file system under Windows NT is in itself layered;
it is possible to interpose functionality at several different
layers. We have chosen to emplace a file system filter driver
immediately between the I/O manager and the various file
systems. This has several benefits the price of increased
complexity. One of these is the ability to intercept at the
individual file level, performing object label manipulations
and selective operations such as encryption, regardless of
whether the file system is local or remote. Similarly, it per-
mits the operation under any type of file system supported
by Windows NT since the file system filter driver operates
at the generic function level that must be supported by all
file systems.

B. System Call Layer

Unlike other operating systems, Windows NT does not
have a simple mechanism for replacing or changing parts
of system call interfaces. In addition, there are typically
several code paths to achieve the same goal due in part to
NT’s multiple OS personalities. As a result, the most gen-
eral mechanism is to replace system dynamic link libraries
with “shell” libraries that take the place of the original
library, forward most calls unmodified to the original li-
brary, and perform necessary manipulations and callouts
both down- and upstream. This mechanism is general in
nature, but implies a level of complexity and version track-
ing that makes it impractical from a pragmatic viewpoint.

C. Unix System V Release 4 Derivatives

Unix has been the subject of significant research into se-
curity mechanisms due to its extensible design and source
availability. We have concentrated on implementing the
mechanisms described here first in System V Release 4
derivaties due to their maturity and commercial signifi-
cance. These systems, like all modern Unices, also have
a unified virtual memory and caching architecture, but un-
like Windows NT are largely synchronous in terms of the
way kernel operations are performed, reducing complexity
in the process.

C.1 Device Interface Layer

Where access control mechanisms provided by the host
operating system is insufficient, the mechanism to control
the device interface layer is quite similar to the wrapper
library discussed in section VI-B. In this case the func-
tionality of the wrapper limited and well-defined and can
be re-used for a number of devices since Unix device drivers

fall into only a limited number of categories. The only in-
stance where device-specific mechanisms are required is in
handling IOCTLs.

C.2 Network Protocol Layer

The network subsystem of System V Release 4 Unix
derivatives is highly structured; data traffic is ultimatlely
passed through the asynchronous STREAMS stack even
though it may have originated in other API layers. One
can intercept or replace data at multiple sublayers from the
link layer upward. Depending on the availability of a native
IPSEC implementation, either augmentation or wrapping
of the existing stack is called for; wrapping is the more
general mechanism but implies a considerable performance
impact. The STREAMS layer does, however, provide the
necessary data structures to easily identify both the pro-
cess, the executable data performing the operation, and the
user, permitting to localize several policy decisions.

C.3 File System Layer

Most modern Unix derivatives use the modular virtual
file system (VFS) architecture. This mechanism can be
used to easily add new file systems without changing the
kernel and core data structures itself; in addition, the Vn-
ode abstraction has replaced the traditional Inode of older
Unix versions. This architecture also permits the inser-
tion of modular code that changes the behavior of existing
file systems even though this use was not anticipated in the
original design [16]. Another feature of the VFS/Vnode ar-
chitecture permits maintenance of bookkeeping data within
private data structures associated with each open file,
greatly simplifying the required overhead operations.

D. System Call Layer

Since Unix traditionally provides a single system call
mechanism that can be amended either by directly modi-
fying the dispatch table or adding new system calls – the
latter even dynamically in some newer systems – this has
been a tempting area to add security functionality [17], [11].
While it is in fact possible to mimic some functionality such
as file system access and use control or encryption at this
level, this does not address issues such as the unified vir-
tual memory architecture. Modifications at this level are
therefore kept at a minimum.

VII. Related Work

The approach of modifying a COTS host operating sys-
tem by inserting kernel modules has also been pursued with
the SLIC system [17]; the focus there is on modifying the
system call behavior of Unix derivatives.

The Generic Software Wrappers mechanism [11] simi-
larly focuses on such modifications to system call behav-
ior, although with application security as the main focus.
[11] also defines a language for defining wrapper behavior.
Wrapping individual applications regarding their network
behavior is an approach that was proposed in [18].

Domain and Type Enforcement [19] represents another,
more intrusive modification of an operating system for em-
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bedding security mechanisms; the main drawback here is
that the concept requires explicit labeling and cooperation
in a networked environment; the DTE firewall concept is
an all-or-nothing approach.

The latter aspect is dealt with in an extension to the
Flask/Fluke [20] architecture [21]. This mechanism also
permits the use of a fine-grained access control policy at
the level of individual calls but requires the infrastructure
from the Flask/Fluke environment and is therefore difficult
to adapt to a COTS environment.

The approach of clearly segregating policy and enforce-
ment at the level of a host operating system was articulated
in the Synergy [8] project and its precursors [22] and can
be found in most of the related work discussed above; the
ERM/ECRM mechanism simply moves the already sepa-
rated parts into different nodes on a network with distinct
roles and permits a consistent enforcement of a given secu-
rity policy.

VIII. Outlook and Future Work

Our group has been working on security enhancements
to COTS operating systems since early 1998, at first fo-
cused mainly on enhancements to file system mechanisms.
Both technological and threat developments have shown
that the boundary between a firewalling mechanism and a
more general host and network security system could no
longer be maintained. Current research directed towards
implementing the full breadth of mechanisms described in
this paper and on identifying additional layering mecha-
nisms where adding security mechanisms using higher-level
semantics are beneficial. One example of such a mecha-
nism would be control over printing operations which can,
besides merely granting permission to submit print jobs,
include the embedding of both visible (e.g. classification
labels independent of applications) and invisible markings
(digital watermarks [23]) into the print output.

Another major future research area is the reduction and
analysis of the audit data gathered throughout the inter-
networked system and the interrelation of access and use
patterns to relevant user or code behavior.
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