
Network Forensics of SSL/TLS Encrypted Channels
Meng-Da Wu and Stephen Wolthusen
Information Security Group, Royal Holloway, University of London, UK
M.D.Wu@rhul.ac.uk
Stephen.Wolthusen@rhul.ac.uk

Abstract: Network forensics is increasingly hampered by the ubiquitous use of encrypted channels by
legitimate and illegitimate network traffic. Both types of traffic are frequently tunneled over application-layer
encryption mechanisms, generally using the ubiquitous TLS (SSL) protocol. This results in traditional network
forensics tools being largely limited to recording external characteristics (source and origin addresses and
ports, time and traffic patterns), but with little insight into content and purpose of the traffic. We propose that a
precise characterization of encrypted traffic not only in the form of the external characteristics but also through
the analysis of the exact mechanisms, variants and options used for the encrypted channel but visible without
access to key material along with a fine-grained analysis of the traffic patterns itself incorporating domain
knowledge of the SSL/TLS protocol can yield valuable insights and help to classify traffic into legitimate traffic,
illegitimate immediate traffic (e.g. as caused by a Trojan). It can also characterize traffic that is added to an
existing data stream by an illegitimate source. In this paper, we therefore present and characterize different
traffic types and subsequently analyze this traffic, including the SSL/TLS protocol data units using selected
sequence mining techniques.

Key words: SSL/TLS, network forensics, traffic classification, sequence alignment

1. Introduction
The identification and classification of encrypted channels presents a significant challenge for
intrusion detection (ID) and forensics, which is exacerbated by the fact that many of these channels
are established at the application level and therefore cannot be readily controlled by system
administrators. Traditional ID and forensics tools can record only external characteristics (source
and origin addresses and ports, time and traffic patterns), but have only limited insight into the
legitimacy and purpose of the observed data streams.

Observing that different applications as well as permutations of client and server systems exhibit
differing characteristics in the way that they use encryption protocols, we propose that it is possible
to obtain information on the legitimacy of such traffic by subjecting the variants of the protocols
used to classification and analysis.

In this paper we restrict ourselves to the SSL/TLS protocol suite as this represents an ubiquitous
standard for application-level encrypted channels used in a variety of legitimate applications as well
as malicious traffic. It should be noted, however, that the techniques discussed in this paper do,
however, also apply to other protocols such as the SSH protocol family or protocols such as IPSec.
This analysis can be effected without requiring access to key material, and can be used for
identifying known (legitimate) encryption engines through fingerprinting as well as for classifying
unknown, potentially suspicious encryption engines. Moreover, we also investigate the use of
statistical patterns in the handling of encrypted payload streams, which can also be used to classify
application behavior.

The remainder of the paper is therefore structured as follows: Section 2 reviews the background of
protocols and techniques used along with related work. We provide an overview of techniques and
metrics for classification and fingerprinting of encrypted streams in section 3 and apply these in
section 4. Section 5 then reviews the results before we discuss ongoing and future research in
section 6.

2. Background and related work

2.1 Traffic classification and inference
Traffic classification has recently been the main subject of network security research. HTTP,
SMAP, FTP, SSH, Telnet, and SSL can be distinguished by extracting information from packet

 303

The 6th European Conference on Information Warfare and Security

payloads (Zhang & Paxson 2000; Moore & Papagiannaki 2005; Bernaille, et al. 2006), inter-arrival
time (Early, et al. 2003; Zhang & Paxson 2000), TCP flaps (Early et al. 2003; Moore & Zuev 2005;
Karagiannis, et al. 2005), and packet size (Wright, et al. 2006; McGregor, et al.2004). A number of
techniques, including machine learning, statistical analysis, or customized algorithms have been
applied to traffic classifications. SSL tunnels can be readily recognized using these techniques as
the protocol is well-defined. Moreover, packet timing and size information can also reveal sensitive
information; e.g. browsing SSL/TLS encrypted web pages can be identified by statistical traffic
analysis for web pages identification (Sun, et al. 2002). Inter-keystroke timing can be inferred from
IP packet to reduce search space for cracking passwords (Song, et al. 2001). More exotically,
remote physical device fingerprinting can be accomplished by obtaining clock skew information
from TCP headers of a device (Kohno, et al. 2005). Moreover, for the purpose of information
inference, sequence alignment is also applied to this domain. For instance, web navigation patterns
can be clustered by sequence alignment methods (Hay, et al. 2001). Semi-global and pair-wise
alignment techniques have also recently been applied in intrusion detection for detecting
masquerades in Unix commands (Coull, et al. 2003).

All of the above techniques can be applied to network forensics. For the purpose of finding more
clues about SSL tunnels, each of these can play different roles. Traffic classification techniques
can provide high level inference for classifying application layer, and packet timing and size
information can be used in several application-specific information leakage attacks on various kinds
of encrypted traffic. Characteristic actions such as web page access can also be identified.
Therefore, SSL tunnel identification and fine-grained operations of SSL software can be inferred by
these techniques. Implementation signature fingerprints and statistical analysis can add another
dimension to this classification.

2.2 SSL/TLS sequential headers

SSL (Secure Sockets Layer) / TLS (Transport Layer Security) sits above TCP and provides a
number of security services, including traffic encryption, client-side and server-side authentication,
and message integrity. It was originally developed to secure connections between web servers and
browsers, but is not limited to tunneling HTTP (Hypertext Transfer Protocol). Any upper-layer
protocol or application which replies on TCP can integrate security services provided by SSL/TLS,
such as FTP, Telnet, or POP. SSL/TLS is a multilayer protocol consisting of four separate
components, including record protocol, handshake protocol, change cipher spec protocol, and alert
protocol. SSL/TLS is flexible in its configuration and choice of parameters, and it can be
implemented by different methods, such as server-side only authentication, both-side
authentication, or (historically) using the FORTEZZA handshake. Implementations can be
customized to suit application requirements (Rescorla 2000).

All key material exchange, application data delivering, and session termination are performed by
exchange of SSL/TLS headers (segments), such as Client Hello, Certificate, and
ChangeCipherSpec. These headers transfer different messages to establish SSL/TLS tunnels, and
headers appear in different order depending on the concrete implementation as the specification
allows for some variation. Moreover, some pure TCP headers without carrying any SSL/TLS
messages appear in real network traffic as artifacts, permitting the use of sequential pattern
identification.

2.3 Sequence alignment mechanisms
It can be observed that SSL/TLS segments form a sequential pattern whose classification and
comparison represents a similar problem as the sequence alignment problem found in
bioinformatics comparing RNA, DNA, or protein sequences. A sequence is usually defined as a
number of elements, objects or events arranged in succession. The sequence alignment technique
is a well-developed tool to measure similarity between sequences. Computational approaches to
sequence alignment generally fall into three categories: global alignments, local alignments, and
semi-global alignments. Various alignments allow the algorithm to search subsequence with
different features. The global alignment, known as Needleman-Wunsch algorithm (Needleman
&Wunsch 1970), forces the alignment to span over the entire length of both strings. Local

304

 Meng-Da Wu and Stephen Wolthusen

alignment, known as Smith-Waterman algorithm (Smith & Waterman 1981), focuses on identifying
best aligned subsequences of two sequences over all possible substrings. Both prefixes and
suffixes are disregarded by achieving local alignment to find best matching substrings. Finally,
semi-global alignment aims to align the whole sequence based on several similar regions.

Global alignments attempt to fully align two sequences. In this case, short and highly similar
substrings might be ignored because they are outweighed by the rest of the sequence. In our
experiments, we assume SSL/TLS software would produce regular sequential headers which can
be treated as similar pieces of subsequences. We chose local alignment to compute subsequence
similarity of each tunnel. Sequence alignment is a technique used in bioinformatics which can be
leveraged easily for the purposes of our discussion. The focus of this paper is primarily on the use
of local alignment techniques. For this purpose we have used the sequence alignment and
visualization software Geneious, an integrated bioinformatics tool suite for manipulating, finding,
sharing, and exploring biological data which is presented by sequential symbols. In our experiment,
we used this tool to compare sequential SSL segments after classification into symbols.

3. Analytical techniques

3.1 Data pre-processing
Prior to the analysis of SSL/TLS protocol data units (typically protocol headers), these need to be
captured and decoded. Both functions are readily available in the form of a popular open source
tool, Wireshark1. Data was obtained on a private switched network using the tcpdump and
WinPCap packet capture mechanisms, resulting in 100% capture rates. Wireshark was then used
to decode the SSL/TLS segments, which were then classified into different segment types and
transformed into individual identifiers for further processing and analysis.

Since the properties of interest for analysis are evident only in individual TCP conversations over
which the SSL/TLS protocol is executed, it is also necessary to isolate these sessions. This
requires not only the separation into source and recipient IP addresses and ports, but particularly
for busy systems must also take sequence numbers into account. Since encrypted sessions are
typically exhibiting low traffic volumes and are clearly separated by at least the initial and usually
closing handshakes, this is trivial.

Traffic intended for further analysis is filtered and exported for further use. Given that we are
interested primarily in discretely classified protocol data units, which can be encoded in a finite set
of symbols, this means that statistical analysis tools for sequence and pattern matching represent
viable approaches. We have therefore investigated the use of tools more commonly used in
bioinformatics, namely the machine learning tool Bioweka2, which we use for data transformation
and subsequent analysis. In addition, another tool from the application domain of bioinformatics
can be used effectively, namely the Geneious3 tool, which implements a number of local and global
sequence alignment algorithms and also provides visualization mechanisms particularly useful in
exploration.

3.2 Data analysis

This paper is concerned with both the fingerprinting of TLS/SSL session initiation and also the
statistical properties of these sessions once they have started properly.

3.2.1 SSL/TLS overview
SSL/TLS is an application-layer protocol which operates solely over reliable connections, namely
the TCP transport layer. It establishes a tunnel over which application data can be exchanged in
accordance with the security policies of the parties participating in the session. To this end, the

1 http://www.wireshark.org
2 http://www.bioweka.org
3 http://www.geneious.com

305

The 6th European Conference on Information Warfare and Security

parties must negotiate security features such as authentication mechanisms, ciphers, and integrity
protection mechanisms before the actual exchange of payload data can begin. This leads to the
following identifiable features of a SSL/TLS session establishment as observed on the network at
an abstract level:

1. A three-way TCP handshake is established between the parties. There exists a limited amount
of variability in this process, which can be used for TCP session fingerprinting.

2. A SSL/TLS handshake is then established. Both the standard as well as standard
interpretations and implementation defects allow for a significant element of variability between
implementations, which will also vary depending on which combination of initiator (client) and
server is performing the session establishment handshake.

3. The tunnel start to exchange application data between both client and server party, potentially
interrupted by cipher suite renegotiations.

4. If either communication party intends to close a session, this can (but need not) be performed
by initiating a SSL/TLS session teardown handshake followed by a TCP session teardown.
Several other alternatives such as session resets and termination without explicit teardown are
also encountered.

One important property observed in network traffic is that in addition to the establishment and
teardown elements, TCP segments which do not contain SSL/TLS messages will also be
observable. The occurrence of such TCP segments is not prescribed by the SSL/TLS standards
and can therefore be a valuable marker for sequential pattern identification of specific
implementations.

3.2.2 Fingerprinting of SSL/TLS sessions
In analogy to TCP fingerprinting, SSL/TLS is also amenable to similar approaches. Moreover, since
there exist several versions and a large number of degrees of freedom in implementing this family
of protocols, the feature space which can be exploited is significantly larger than that of TCP. The
session establishment phase for SSL/TLS tunnels produces an unique sequential pattern of
protocol data units which is variable in length and can, including the TCP handshake segments,
encompass 30 to 50 messages. The precise pattern depends on a number of factors, including the
releases of SSL/TLS engines used and their configuration, e.g. for backwards compatibility,
protocol versions and cipher suites to be used, and the type of authentication mechanism deemed
acceptable or required. It should be noted that on congested channels, noise may be introduced in
this pattern e.g. through sequencing errors or retransmissions. The experiments reported in the
following section did not include such noise additions. Similarly, though as discussed in the
previous section not necessarily always present, the session teardown for an established SSL/TLS
tunnel yields another pattern of protocol data units, typically between 5 and 7 segments long.

Moreover, these fingerprint patterns are independent of the actual data transmitted over the tunnel
after establishment. There is, however, a way to influence the patterns through the configuration of
the tunnel parameters, so that it is possible not only to fingerprint the combinations of SSL/TLS
engines used on both sides of a session but also to indirectly include the client and server
applications using this channel based on their configuration behavior. The precise behavior in a
given combination of client and server system also depends on the degrees of freedom and
configurability in both systems. If one of the parties is not prepared to negotiate tunnel properties,
this of course limits the overall feature sub-space which can be used for this combination.

3.2.3 Patterns of TCP and SSL/TLS segments

Once the session establishment handshakes are completed, the tunnel is then ready to transmit
application payload data. Except for optional re-keying and cipher suit change messages used by
the SSL/TLS protocols, this means that segments containing (encrypted) payload data will be sent
over the tunnel.

As noted above, it can be observed that many implementations (potentially also owing to
interactions between the SSL/TLS layer and the underlying network protocol stack) will not make

306

 Meng-Da Wu and Stephen Wolthusen

optimum use of the TCP protocol by always adding administrative information such as segment
acknowledgments to existing payload messages. Instead, TCP segments without SSL/TLS
payloads can be observed. This allows the identification of statistical patterns in the sequencing
and frequency of the SSL/TLS application protocol data units and the payload-free TCP segments
during ongoing sessions, e.g. in the form of an analysis of the proportions of these messages over
selected time and message frequency windows, which exhibit distinguishing patterns for given
tunnel endpoint combinations.

For ease of reference, we therefore refer to “SSL/TLS application” and “TCP” segments when
discussing the experimental and analytical results in the following section.

3.2.4 Sub-sequence pattern matching using payload data exchange
While, as discussed in the preceding section, “SSL/TLS application” and “TCP” segments form a
characteristic pattern, there are several factors influencing the segment patterns observed. In part,
these are determined by the combination of underlying network protocol stack, SSL/TCP layer, and
the application’s behavior (e.g. with a TLS-based VPN transporting character-by-character terminal
data using the TCP PSH flag differing significantly from a bulk data transfer using HTTP, even if
retaining all other variables constant).

It is therefore insufficient to observe only global patterns as these may not exhibit sufficient
uniformity for analysis. However, by concentrating on characteristic patterns occurring in smaller
excerpts of the analyzed data stream and applying a local alignment string-matching technique
also commonly used in bioinformatics, similarities can still be identified.

3.2.5 Other features supporting inference
Three additional features can be used to distinguish particular SSL/TLS implementations and their
configuration (i.e. some implementations may support these features but have them deactivated or
misconfigured. One of these features is the session caching mechanism, which allows endpoints to
resume a session without requiring the computational cost of negotiating a new cipher suite. If no
previous session exists, or if one of the parties wishes to establish a new session, it will set the
session identified to 0, forcing the negotiation of a new cipher suite and generation of a new master
key in the process. If a previous session exists, and both parties are willing to resume this session,
the session identifier of that previous session is exchanged, resulting in re-use of both cipher suite
and master key.

Another behavioral pattern is that some implementations force the sequential use of sessions
within the established SSL/TLS tunnel, while others make use of the full SSL/TLS feature set and
encapsulate multiple simultaneous payload sessions within the context of the same tunnel. This
can be observed even without access to key material from the participating parties by extracting
session headers and analyzing whether session segments overlap. The final feature is linking
number of communication behavior. This can be implemented by either single tunnel of 2 TCP
ports or multiple tunnels established to accomplish SSL/TLS communication.

4. Experiments

4.1 Experimental setup
Six software packages were selected as specimens for the feature analysis of message segment
sequences. Table 1 shows the software specimens chosen for use in the experiments. To facilitate
the evaluation of statistical properties, a training and an evaluation data set were captured for each
specimen against an Apache 1.3.34 with built-in SSL/TLS module4. All features were extracted and
analyzed for the accuracy of predictions obtainable for each combination and feature.

4http://slampp.abangadek.com/wiki/HomePage.

307

The 6th European Conference on Information Warfare and Security

For each data set of each software, we collected 30 sample sets for analysis. Each sample set
included the full communication traffic between client and the server. Each sample set in turn
consists of a number of sessions which are established between 2 TCP ports, and we randomly
chose one session from a sample set for extracting features. This results in the selection of 30
sessions for both the training and test sets, respectively.

Three different SSL/TLS tunnel tools were used to analyze tunneled traffic. SoftEther5 can establish
a tunnel and present it as a proxy to client systems, e.g. for accessing services on the Internet.
One of the applications of SoftEther is to tunnel through enterprise firewalls, which it can
accomplish by using a connection to port 443 to link to a server outside the enterprise, and to
forward arbitrary traffic from that endpoint. In our experiment, traffic in which a client used the
SoftEther server as such a proxy for browsing WWW sites was captured.

We used Titan FTP Server6 and Gene6 FTP Server7 to present SSL/TLS FTP communication
implemented over SSL/TLS and chose WebDrive8 as a SSL-capable FTP client to produce our
experimental data. For the SSL/TLS FTP server, explicit or implicit methods can be used to
establish a SSL/TLS tunnel with an SSL/TLS FTP client. In our experiments, we set both client and
server side to implicit mode, and captured traffic as the client arbitrarily accessed, deleted, or
modified files through SSL/TLS tunnels. We captured and extracted all features from both the
command and data channels used by the FTP protocol. Three web scanner tools were tested in
our experiments, including Nikto 9, N-Stalker10, and WatchFire11. We captured traffic representing
the scanner tool analyzing the test web site. For regular client-side HTTPS traffic, we used Firefox
version 1.5.0.10 as our experimental browser client and captured data while a user browsed WWW
sites.

In this paper, we collected all raw data as the client party communicated with the server party over
an undisturbed, isolated network. Thus, we assume that we collect 100% of network traffic without
sequencing errors or missing packets; the incorporation of such noise into the data set is the
subject of future research.
Table 1: Software specimens using SSL/TLS

Software Category Client Side(software version,OS) Server Side(software version,OS)
SSL/TLS VPN SoftEther (1.00 on XP SP2) SoftEther (1.00 on XP SP2)
SSL/TLS FTP WebDrive (7.21 on XP SP2) GeneFTP (3.9.0 on XP SP2)
SSL/TLS FTP WebDrive (7.21 on XP SP2) TitanFTP (5.34 on XP SP2)
Web scanner Nikto (1.34 on Linux 2.4.31) Web Server

(Apache 1.3.34 on Linux 2.6.13.2)
Web scanner N-Stalker (6.0.1.120 on XP SP2) Web Server

(Apache 1.3.34 on Linux 2.6.13.2)
Web scanner Watchfire (7.0 on XP SP2) Web Server

(Apache 1.3.34 on Linux 2.6.13.2)
Browser FireFox (1.5.0.10 on XP SP2) Web Server

(Apache 1.3.34 on Linux 2.6.13.2)

4.2 Extraction of proportion-based statistical patterns
For extracting proportion-based statistical patterns, we selected 200 segments from the 31st to
230th packets of 30 sessions each from the data sets to compute this pattern. There are only 2
kinds of segment formats appearing during this period, including “SSL/TLS” application and “TCP”
segments. The proportion of the statistical distribution is a pattern specific to a given software
package. As the length of the fingerprint-related segments varies and does not contribute to this
pattern, we have omitted the first 30 segments.

5 http://www.softether.com
6 http://www.southrivertech.com.
7 http://www.g6ftpserver.com/
8 http://www.southrivertech.com/products/webdrive/index.html
9 http://www.cirt.net/code/nikto.shtml.
10 http://www.nstalker.com.
11 http://www.watchfire.com.

308

 Meng-Da Wu and Stephen Wolthusen

Table 2 shows our experimental data, and the percentage presents the proportion of “SSL/TLS”
application to “TCP” segments in a specific tunnel. We used the value of hypothesis tests to
evaluate accuracy. Here, we only evaluated the mean value by hypothesis testing in which we
used two-tailed tests without assumptions about the population standard deviation.

P

Table 2: Proportion-based statistical patterns
Traffic Category µ Training Set µ Testing Set σ Training Set σ Testing Set P Value
SoftEther 57.71 % 57.68% 0.031806 0.041032 0.9716
Https 37.08 % 37.48% 0.018712 0.017542 0.2117
Gene6FTP command 92.82 % 92.27% 0.023359 0.028579 0.2977
Gene6FTP data 11.00 % 11.10% 0.008375 0.005632 0.3308
TitanFTP command 92.33 % 91.52% 0.035703 0.018959 0.0188
TitanFTP data 11.63 % 11.32% 0.028252 0.021192 0.4180

4.3 Extraction of sub-sequence matching pattern
For extracting sub-sequence matching pattern, we selected 200 segments from the 31st to 230th
packets of 30 sessions of each data set to compute this pattern. We used local alignment to
randomly compute every two sequences until we get 30 value of similarity. We chose the Smith-
Waterman algorithm implemented in Geneious as our local alignment technique. This allows the
identification of patterns using default local alignment to compute similarities. Table 3 shows our
experimental data, and the similarity levels of matching sub-sequences for given specific tunnels.

 values were used to evaluate accuracy. As before, only the mean value was evaluated using
two-tailed tests without assumptions about the population standard deviation.
P

Table 3:Sub-sequence matching pattern
Traffic Category µ Training Set µ Testing Set σ Training Set σ Testing Set P Value
SoftEther 71.17% 70.27% 0.038801 0.02983 0.1035
Https 85.54% 85.60% 0.029494 0.028333 0.3986
Gene6FTP command 94.79% 93.56% 0.028492 0.029272 0.3494
Gene6FTP data 97.60% 96.44% 0.017927 0.04175 0.1292
TitanFTP command 92.73% 93.04% 0.027427 0.023033 0.4562
TitanFTP data 98.50% 98.43% 0.008808 0.010148 0.7190

4.4 Extraction of fingerprint patterns and other features

4.4.1 Fingerprint
Domain knowledge was applied to extract abstract segment information for identifying session
fingerprints. In our experiments for this paper, we classified segments into categories based on the
abstract protocol data units of the SSL/TLS protocol. These classifications are given a symbolic
shorthand (also used in pattern matching) as shown in table 4. If a message segment contains one
protocol data unit (PDU), this results in a single classification unit (letter), whereas a segment
containing multiple PDUs will be classified as a sequence of units.
Table 4: Rules of extracting abstract segment information

Letter Protocol Abstract Information
S SSL/TLS Client Hello
H SSL/TLS Server Hello
G SSL/TLS Change Cipher Spec
M SSL/TLS Encrypted Handshake Message
I SSL/TLS Certificate
D SSL/TLS Server Hello Done
K SSL/TLS Client Key Exchange
X SSL/TLS Server Key Exchange

309

The 6th European Conference on Information Warfare and Security

A SSL/TLS Application Data
E SSL/TLS Encrypted Alert
N TCP TCP Flow
F TCP TCP FIN

In our experiments, we randomly chose 30 sessions for each tunnel. In every session, selected 35
segments from the first 30 and final 5 segments, and then classified segment information into sets
of letters. We choose the mode from 30 sets of letters as the fingerprint. Table 5 shows the raw
fingerprint data sets from all tunnels. As before, a noiseless capture is assumed, making this
dependent solely on software stacks and combinations of client/server systems.
Table 5: Raw fingerprint information

Software Tunnels Fingerprint
SoftEther NNNS[HID][KGM][GM]NAAAAAAAANAAA–

NAAAANANANEFNFN
Https NNNSN[HIXD]N[KGM][GM]ANANAAAAAAN–

NNNNNNNNNNFENFN
Gene6FTP Command NNNS[HID][KGM][GM]ANAAAAAAAAAAA–

AAAAAAAAAANFNFN
Gene6FTP Data NNNNS[HID][KGM][GM]ANNNNNNNNNN–

NNANNNNNNNNNNFN
TitanFTP Command NNNS[HIXD][KGM][GM]ANAAAAAAAAAAA–

AAAAAAAAAANFNFN
TitanFTP Data NNNS[HIXD][KGM][GM]ANNNNNNNNNNNN–

NNNNANNNNNNFNFN
Nikto NNNSN[HIXD]N[KGM][GM]AFAEFN

(packet size :15)
N-Stalker NNNSN[HIXD][KGM][GM]AAENFNFN

(packet size :16)
Watchfire NNNSN[HGM][GM]AAFNFN

(packet size :13)

4.4.2 Other features of interest
There are several features of SSL/TLS channels which are not present in all implementations and
may not manifest in each permutation and configuration which can also be of interest for
fingerprinting and classification of encrypted channels. Table 6 presents features resulting from
different SSL/TLS tunnel implementations, including variations in the resumption strategies for
SSL/TLS handshakes, SSL/TLS segments crossing, and linking number.
Table 6: List of other features of interest

Software Tunnels Resuming Handshake Segments Crossing Linking number
SoftEther No No Single
Https Yes Yes multiple
Gene6FTP Command No Yes multiple
Gene6FTP Data No Yes multiple
TitanFTP Command No Yes multiple
TitanFTP Data No Yes multiple
Nikto No No multiple
N-Stalker No Yes multiple
Watchfire Yes No multiple

4.5 Features discussion
Features of fingerprint, resuming handshake, segments crossing and linking numbers demonstrate
100% accuracy from our (noiseless) training data sets and testing data sets, indicating the
expected large feature size allowing precise classification of tools even for a relatively coarse level
of classification. Web scanner tools do not communicate with web servers as they interrupt
communication sessions before transmitting payload data, so proportion-based or sub-sequence
matching statistical patterns cannot be extracted from them. Moreover, the length of fingerprints in
case of scanners is limited. As noted above, however, measurement data is simulated and
occurred only over a lightly loaded local area network; both the use of different server system times

310

 Meng-Da Wu and Stephen Wolthusen

and software packages including different versions as well as their behavior under noisy conditions
are subjects of future research.

5. Experimental results and discussion
The promising results of section 4 indicate that significant amounts of information useful for the
forensic analysis of encrypted traffic without knowledge of keying material, albeit with significant
variations in the accuracy with which individual applications (as opposed to SSL/TLS
implementations over which these applications communicate) can be identified. However, The
technique of extracting fingerprinting and behavioral characteristics can be used to identify several
elements and permutations of the software stacks in use. Moreover, information and privacy
leakage of software’s operations can be identified by observing protocol implementations, and this
idea can be applied to all encrypted network protocols for forensic purposes. In accordance to our
observations, more detail software operations can be identified by analyzing protocol
implementation behaviors. While the specific operational individual implementations were not
subject of investigations reported in this paper, the techniques we describe are readily applicable to
obtaining finer-grained classification results from encrypted protocols. This information leakage
does not originate with the protocol, which can be considered secure. Rather, inferences rely on
how software implements a secure protocol, and legitimate variations in implementation behavior
that are still within the confines of the specification. Thus, information leakage from protocol
implementing is inevitable and needs to be checked (and potentially masked) if privacy or evasion
of intrusion detection mechanisms is a concern.

The fingerprints and behavioral patterns observed are functions of the endpoints involved in a
session since negotiation behavior figures prominently in the SSL/TLS protocol. These can e.g. be
formed by a SSL-capable FTP client communicating with a FTP server (directly of via proxy),
communication between WWW client and server systems, or SSL VPN configurations.
Fingerprinting techniques can be applied in a straightforward manner and are easily feasible in
practical network forensics applications. For other traffic, statistical analysis yields more ambiguous
results, so it may well be beneficial to concentrate solely on fingerprints as e.g. browsing behavior
or interactions between web services and clients are more complex and would require more
detailed statistical analysis incorporating more domain knowledge to gain results with adequate
statistical significance. As noted above, patterns observed for SSL/TLS tunnels also depend on
configuration of the software stacks in use, which introduces several additional degrees of freedom
for profiling (e.g. there exist two methods to do SSL handshake in SSL FTP software, implicit and
explicit methods). This can improve the accuracy with which an application/malware can be
identified as this fingerprint pattern becomes more specific.

Finally, it should be noted that we have merely presented an arbitrary selection of SSL/TLS
implementations and applications using this approach; actual forensic work will require the creation
and maintenance of a detailed database of fingerprint patterns for the various parameters such as
host operating systems, SSL/TLS implementations, software (for positive and negative
identification e.g. of malware), and configuration issues. We have, however, demonstrated that
these patterns exist and can be readily extracted and classified.

6. Conclusions
In this paper we have presented an extension of the successful context of TCP session
fingerprinting to the domain of SSL/TLS tunnels, which can provide important forensic information
on the precise implementations and application programs using these SSL/TLS implementations.
Such information can be particularly useful when trying to identify whether the encrypted and hence
opaque data stream is emanating from a known and legitimate application program on a given host
or whether the sessions originate with a potentially hostile unknown program such as e.g. a rootkit.
We have also shown that the permutations of SSL/TLS implementations, network stacks,
application configuration, and application data flow can be used to further provide evidence for
characterizing the applications and endpoints of encrypted tunnels, also without requiring access to
key material, and from observations solely at the network layer. Particularly for the latter we have
investigated the use of sequence alignment and matching tools from the application domain of

311

The 6th European Conference on Information Warfare and Security

bioinformatics, which, like network forensics, must also cope with noisy, incomplete data sets yet
still be capable of adequate performance in sequence matching. Further tuning and adaptation of
these pattern matching techniques, particularly in congested high-traffic environments is a subject
for further research, as is further expansion of the database of configuration permutations since the
results reported here represent only proof of principle. We also intend to investigate the behavior of
real-time channels such as encrypted chat or voice over IP connections and their behavior based
on similar fingerprinting and statistical analysis of other encryption and tunneling protocols such as
IPSec.

References
Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A. and Salamatian, K. (2006). ‘Traffic Classification

on the Fly’. SIGCOMM Comput. Commun. Rev. (2):23–26.
Coull, C., Branch, J., Szymanski, B. and Breimer, E. (2003). ‘ Intrusion Detection: A Bioinformatics

Approach ’. In Computer Security Applications Conference, 2003. Proceedings. 19th
Annual, pp. 24–33. IEEE Computer Society.

Early, J.P., Brodley, C.E. and Rosenberg, C. (2003). ‘ Behavioral Authentication of Server Flows’.
In Computer Security Applications Conference, 2003. Proceedings. 19th Annual), pp. 46–
55. IEEE Computer Socirty Press.

Hay, B., Wets, G. and Vanhoof, K. (2001). ‘ Clustering Navigation Patterns on A Website Using A
Sequence Alignment Method ’. In Intelligent Techniques for Web Personalization : 17th ,
Artificial Intelligence .

Karagiannis, T., Papagiannaki, K. and Faloutsos, M. (2005). ‘BLINC: Multilevel Traffic Classification
in the Dark’. In SIGCOMM ’05: Proceedings of the 2005 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, vol. 35, pp.
229–240, New York, NY, USA. ACM Press.

Kohno, T., Broido, A. and Claffy, K.C. (2005). ‘Remote Physical Device Fingerprinting’. IEEE
Transactions on Dependable and Secure Computing :93–108.

McGregor, A., Hall, M., Lorier, P. and Brunskill, J. (2004). ‘Flow Clustering Using Machine Learning
Techniques’. In Passive and Active Network Measurement, Lecture Notes in Computer
Science, pp. 205–214. Springer Berlin .

Moore, A. W. and Papagiannaki, K. (2005). ‘Toward the Accurate Identification of Network
Applications’. In Proceedings of the Passive & Active Measurement Workshop (PAM2005),
vol. 3431 of Lecture Notes in Computer Science, pp. 41–54, Berlin, Germany. Springer-
Verlag.

Moore, A. W. and Zuev, D. (2005). ‘Internet Traffic Classification Using Bayesian Analysis
Techniques’. In SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems, pp. 50–60,
New York, NY, USA. ACM Press.

Needleman, S. B. and Wunsch, C. D. (1970). ‘A General Method Applicable to the Search for
Similarities in the Amno Acid Sequences of Two Proteins’. Journal of Molecular Biology
(3):443–453.

Rescorla, E. (2000). SSL and TLS: Designing and Building Secure Systems. Addison-Wesley,
Reading, MA, USA.

Smith, T. F. and Waterman, M. S. (1981). ‘ Identification of common molecular subsequences ’.
Journal of Molecular Biology pp. 195–197.

Song, D. X., Wagner, D. and Tian, X. (2001). ‘ Timing Analysis of Keystrokes and Timing Attacks
on SSH’. In In Proceedings of the 10th USENIX Security Symposium, Washington, D.C.,
USA. The USENIX Association.

Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan, P.N. and Qiu, L. (2002). ‘
Statistical Identification of Encrypted Web Browsing Traffic’. In Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pp. 19–30. IEEE Computer Socirty.

Wright, C. V., Monrose, F. and Masson, G.M. (2006). ‘ On Inferring Application Protocol Behaviors
in Encrypted Network ’. In The Journal of Machine Learning Research , pp. 2745–2769.
Microtome Publishing.

Zhang, Y. and Paxson, V. (2000). ‘Detecting Backdoors’. In Proceedings of the 9th USENIX
Security Symposium, pp. 157–170, Denver, CO, USA. USENIX.

312

