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Abstract: Network forensics is increasingly hampered by the ubiquitous use of encrypted channels by 
legitimate and illegitimate network traffic. Both types of traffic are frequently tunneled over application-layer 
encryption mechanisms, generally using the ubiquitous TLS (SSL) protocol. This results in traditional network 
forensics tools being largely limited to recording external characteristics (source and origin addresses and 
ports, time and traffic patterns), but with little insight into content and purpose of the traffic. We propose that a 
precise characterization of encrypted traffic not only in the form of the external characteristics but also through 
the analysis of the exact mechanisms, variants and options used for the encrypted channel but visible without 
access to key material along with a fine-grained analysis of the traffic patterns itself incorporating domain 
knowledge of the SSL/TLS protocol can yield valuable insights and help to classify traffic into legitimate traffic, 
illegitimate immediate traffic (e.g. as caused by a Trojan). It can also characterize traffic that is added to an 
existing data stream by an illegitimate source. In this paper, we therefore present and characterize different 
traffic types and subsequently analyze this traffic, including the SSL/TLS protocol data units using selected 
sequence mining techniques.   
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1. Introduction 
The identification and classification of encrypted channels presents a significant challenge for 
intrusion detection (ID) and forensics, which is exacerbated by the fact that many of these channels 
are established at the application level and therefore cannot be readily controlled by system 
administrators. Traditional ID and forensics tools can record only external characteristics (source 
and origin addresses and ports, time and traffic patterns), but have only limited insight into the 
legitimacy and purpose of the observed data streams.  

 
Observing that different applications as well as permutations of client and server systems exhibit 
differing characteristics in the way that they use encryption protocols, we propose that it is possible 
to obtain information on the legitimacy of such traffic by subjecting the variants of the protocols 
used to classification and analysis.  

 
In this paper we restrict ourselves to the SSL/TLS protocol suite as this represents an ubiquitous 
standard for application-level encrypted channels used in a variety of legitimate applications as well 
as malicious traffic. It should be noted, however, that the techniques discussed in this paper do, 
however, also apply to other protocols such as the SSH protocol family or protocols such as IPSec. 
This analysis can be effected without requiring access to key material, and can be used for 
identifying known (legitimate) encryption engines through fingerprinting as well as for classifying 
unknown, potentially suspicious encryption engines. Moreover, we also investigate the use of 
statistical patterns in the handling of encrypted payload streams, which can also be used to classify 
application behavior.  

 
The remainder of the paper is therefore structured as follows: Section 2 reviews the background of 
protocols and techniques used along with related work. We provide an overview of  techniques and 
metrics for classification and fingerprinting of encrypted streams in section 3 and apply these in 
section 4. Section 5 then reviews the results before we discuss ongoing and future research in 
section 6.  

2. Background and related work  

2.1 Traffic classification and inference 
Traffic classification has recently been the main subject of network security research. HTTP, 
SMAP, FTP, SSH, Telnet, and SSL can be distinguished by extracting information from packet 
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payloads (Zhang & Paxson 2000; Moore & Papagiannaki 2005; Bernaille, et al. 2006), inter-arrival 
time (Early, et al. 2003; Zhang & Paxson 2000), TCP flaps (Early et al. 2003; Moore & Zuev 2005; 
Karagiannis, et al. 2005), and packet size (Wright, et al. 2006; McGregor, et al.2004). A number of 
techniques, including machine learning, statistical analysis, or customized algorithms have been 
applied to traffic classifications. SSL tunnels can be readily recognized using these techniques as 
the protocol is well-defined. Moreover, packet timing and size information can also reveal sensitive 
information; e.g. browsing SSL/TLS encrypted web pages can be identified by statistical traffic 
analysis for web pages identification (Sun, et al. 2002). Inter-keystroke timing can be inferred from 
IP packet to reduce search space for cracking passwords (Song, et al. 2001). More exotically, 
remote physical device fingerprinting can be accomplished by obtaining clock skew information 
from TCP headers of a device (Kohno, et al. 2005). Moreover, for the purpose of information 
inference, sequence alignment is also applied to this domain. For instance, web navigation patterns 
can be clustered by sequence alignment methods (Hay, et al. 2001). Semi-global and pair-wise 
alignment techniques have also recently been applied in intrusion detection for detecting 
masquerades in Unix commands (Coull, et al. 2003).  

 
All of the above techniques can be applied to network forensics. For the purpose of finding more 
clues about SSL tunnels, each of these can play different roles. Traffic classification techniques 
can provide high level inference for classifying application layer, and packet timing and size 
information can be used in several application-specific information leakage attacks on various kinds 
of encrypted traffic. Characteristic actions such as web page access can also be identified. 
Therefore, SSL tunnel identification and fine-grained operations of SSL software can be inferred by 
these techniques. Implementation signature fingerprints and statistical analysis can add another 
dimension to this classification.  

2.2 SSL/TLS sequential headers 

SSL (Secure Sockets Layer) / TLS (Transport Layer Security) sits above TCP and provides a 
number of security services, including traffic encryption, client-side and server-side authentication, 
and message integrity. It was originally developed to secure connections between web servers and 
browsers, but is not limited to tunneling HTTP (Hypertext Transfer Protocol). Any upper-layer 
protocol or application which replies on TCP can integrate security services provided by SSL/TLS, 
such as FTP, Telnet, or POP. SSL/TLS is a multilayer protocol consisting of four separate 
components, including record protocol, handshake protocol, change cipher spec protocol, and alert 
protocol. SSL/TLS is flexible in its configuration and choice of parameters, and it can be 
implemented by different methods, such as server-side only authentication, both-side 
authentication, or (historically) using the FORTEZZA handshake. Implementations can be 
customized to suit application requirements (Rescorla 2000).  

 
All key material exchange, application data delivering, and session termination are performed by 
exchange of SSL/TLS headers (segments), such as Client Hello, Certificate, and 
ChangeCipherSpec. These headers transfer different messages to establish SSL/TLS tunnels, and 
headers appear in different order depending on the concrete implementation as the specification 
allows for some variation. Moreover, some pure TCP headers without carrying any SSL/TLS 
messages appear in real network traffic as artifacts, permitting the use of sequential pattern 
identification.  

2.3 Sequence alignment mechanisms 
It can be observed that SSL/TLS segments form a sequential pattern whose classification and 
comparison represents a similar problem as the sequence alignment problem found in 
bioinformatics comparing RNA, DNA, or protein sequences. A sequence is usually defined as a 
number of elements, objects or events arranged in succession. The sequence alignment technique 
is a well-developed tool to measure similarity between sequences. Computational approaches to 
sequence alignment generally fall into three categories: global alignments, local alignments, and 
semi-global alignments. Various alignments allow the algorithm to search subsequence with 
different features. The global alignment, known as Needleman-Wunsch algorithm (Needleman 
&Wunsch 1970), forces the alignment to span over the entire length of both strings. Local 
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alignment, known as Smith-Waterman algorithm (Smith & Waterman 1981), focuses on identifying 
best aligned subsequences of two sequences over all possible substrings. Both prefixes and 
suffixes are disregarded by achieving local alignment to find best matching substrings. Finally, 
semi-global alignment aims to align the whole sequence based on several similar regions.  

 
Global alignments attempt to fully align two sequences. In this case, short and highly similar 
substrings might be ignored because they are outweighed by the rest of the sequence. In our 
experiments, we assume SSL/TLS software would produce regular sequential headers which can 
be treated as similar pieces of subsequences. We chose local alignment to compute subsequence 
similarity of each tunnel. Sequence alignment is a technique used in bioinformatics which can be 
leveraged easily for the purposes of our discussion. The focus of this paper is primarily on the use 
of local alignment techniques. For this purpose we have used the sequence alignment and 
visualization software Geneious, an integrated bioinformatics tool suite for manipulating, finding, 
sharing, and exploring biological data which is presented by sequential symbols. In our experiment, 
we used this tool to compare sequential SSL segments after classification into symbols.  

3. Analytical techniques 

3.1  Data pre-processing 
Prior to the analysis of SSL/TLS protocol data units (typically protocol headers), these need to be 
captured and decoded. Both functions are readily available in the form of a popular open source 
tool, Wireshark1. Data was obtained on a private switched network using the tcpdump and 
WinPCap packet capture mechanisms, resulting in 100% capture rates. Wireshark was then used 
to decode the SSL/TLS segments, which were then classified into different segment types and 
transformed into individual identifiers for further processing and analysis.  

 
Since the properties of interest for analysis are evident only in individual TCP conversations over 
which the SSL/TLS protocol is executed, it is also necessary to isolate these sessions. This 
requires not only the separation into source and recipient IP addresses and ports, but particularly 
for busy systems must also take sequence numbers into account. Since encrypted sessions are 
typically exhibiting low traffic volumes and are clearly separated by at least the initial and usually 
closing handshakes, this is trivial.  

 
Traffic intended for further analysis is filtered and exported for further use. Given that we are 
interested primarily in discretely classified protocol data units, which can be encoded in a finite set 
of symbols, this means that statistical analysis tools for sequence and pattern matching represent 
viable approaches. We have therefore investigated the use of tools more commonly used in 
bioinformatics, namely the machine learning tool Bioweka2, which we use for data transformation 
and subsequent analysis. In addition, another tool from the application domain of bioinformatics 
can be used effectively, namely the Geneious3 tool, which implements a number of local and global 
sequence alignment algorithms and also provides visualization mechanisms particularly useful in 
exploration.  

3.2  Data analysis 

This paper is concerned with both the fingerprinting of TLS/SSL session initiation and also the 
statistical properties of these sessions once they have started properly.  

3.2.1  SSL/TLS overview 
SSL/TLS is an application-layer protocol which operates solely over reliable connections, namely 
the TCP transport layer. It establishes a tunnel over which application data can be exchanged in 
accordance with the security policies of the parties participating in the session. To this end, the 

                                                      
1 http://www.wireshark.org 
2 http://www.bioweka.org 
3 http://www.geneious.com  
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parties must negotiate security features such as authentication mechanisms, ciphers, and integrity 
protection mechanisms before the actual exchange of payload data can begin. This leads to the 
following identifiable features of a SSL/TLS session establishment as observed on the network at 
an abstract level:  

 

1. A three-way TCP handshake is established between the parties. There exists a limited amount 
of variability in this process, which can be used for TCP session fingerprinting.  

2. A SSL/TLS handshake is then established. Both the standard as well as standard 
interpretations and implementation defects allow for a significant element of variability between 
implementations, which will also vary depending on which combination of initiator (client) and 
server is performing the session establishment handshake.  

3. The tunnel start to exchange application data between both client and server party, potentially 
interrupted by cipher suite renegotiations.  

4. If either communication party intends to close a session, this can (but need not) be performed 
by initiating a SSL/TLS session teardown handshake followed by a TCP session teardown. 
Several other alternatives such as session resets and termination without explicit teardown are 
also encountered.  

 

One important property observed in network traffic is that in addition to the establishment and 
teardown elements, TCP segments which do not contain SSL/TLS messages will also be 
observable. The occurrence of such TCP segments is not prescribed by the SSL/TLS standards 
and can therefore be a valuable marker for sequential pattern identification of specific 
implementations.  

3.2.2 Fingerprinting of SSL/TLS sessions 
In analogy to TCP fingerprinting, SSL/TLS is also amenable to similar approaches. Moreover, since 
there exist several versions and a large number of degrees of freedom in implementing this family 
of protocols, the feature space which can be exploited is significantly larger than that of TCP. The 
session establishment phase for SSL/TLS tunnels produces an unique sequential pattern of 
protocol data units which is variable in length and can, including the TCP handshake segments, 
encompass 30 to 50 messages. The precise pattern depends on a number of factors, including the 
releases of SSL/TLS engines used and their configuration, e.g. for backwards compatibility, 
protocol versions and cipher suites to be used, and the type of authentication mechanism deemed 
acceptable or required. It should be noted that on congested channels, noise may be introduced in 
this pattern e.g. through sequencing errors or retransmissions. The experiments reported in the 
following section did not include such noise additions. Similarly, though as discussed in the 
previous section not necessarily always present, the session teardown for an established SSL/TLS 
tunnel yields another pattern of protocol data units, typically between 5 and 7 segments long.  

 
Moreover, these fingerprint patterns are independent of the actual data transmitted over the tunnel 
after establishment. There is, however, a way to influence the patterns through the configuration of 
the tunnel parameters, so that it is possible not only to fingerprint the combinations of SSL/TLS 
engines used on both sides of a session but also to indirectly include the client and server 
applications using this channel based on their configuration behavior. The precise behavior in a 
given combination of client and server system also depends on the degrees of freedom and 
configurability in both systems. If one of the parties is not prepared to negotiate tunnel properties, 
this of course limits the overall feature sub-space which can be used for this combination.  

3.2.3 Patterns of TCP and SSL/TLS segments 

Once the session establishment handshakes are completed, the tunnel is then ready to transmit 
application payload data. Except for optional re-keying and cipher suit change messages used by 
the SSL/TLS protocols, this means that segments containing (encrypted) payload data will be sent 
over the tunnel.  

 
As noted above, it can be observed that many implementations (potentially also owing to 
interactions between the SSL/TLS layer and the underlying network protocol stack) will not make 
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optimum use of the TCP protocol by always adding administrative information such as segment 
acknowledgments to existing payload messages. Instead, TCP segments without SSL/TLS 
payloads can be observed. This allows the identification of statistical patterns in the sequencing 
and frequency of the SSL/TLS application protocol data units and the payload-free TCP segments 
during ongoing sessions, e.g. in the form of an analysis of the proportions of these messages over 
selected time and message frequency windows, which exhibit distinguishing patterns for given 
tunnel endpoint combinations.  

 
For ease of reference, we therefore refer to “SSL/TLS application” and “TCP” segments when 
discussing the experimental and analytical results in the following section.  

3.2.4  Sub-sequence pattern matching using payload data exchange 
While, as discussed in the preceding section, “SSL/TLS application” and “TCP” segments form a 
characteristic pattern, there are several factors influencing the segment patterns observed. In part, 
these are determined by the combination of underlying network protocol stack, SSL/TCP layer, and 
the application’s behavior (e.g. with a TLS-based VPN transporting character-by-character terminal 
data using the TCP PSH flag differing significantly from a bulk data transfer using HTTP, even if 
retaining all other variables constant).  

 
It is therefore insufficient to observe only global patterns as these may not exhibit sufficient 
uniformity for analysis. However, by concentrating on characteristic patterns occurring in smaller 
excerpts of the analyzed data stream and applying a local alignment string-matching technique 
also commonly used in bioinformatics, similarities can still be identified.  

3.2.5  Other features supporting inference 
Three additional features can be used to distinguish particular SSL/TLS implementations and their 
configuration (i.e. some implementations may support these features but have them deactivated or 
misconfigured. One of these features is the session caching mechanism, which allows endpoints to 
resume a session without requiring the computational cost of negotiating a new cipher suite. If no 
previous session exists, or if one of the parties wishes to establish a new session, it will set the 
session identified to 0, forcing the negotiation of a new cipher suite and generation of a new master 
key in the process. If a previous session exists, and both parties are willing to resume this session, 
the session identifier of that previous session is exchanged, resulting in re-use of both cipher suite 
and master key.  

 
Another behavioral pattern is that some implementations force the sequential use of sessions 
within the established SSL/TLS tunnel, while others make use of the full SSL/TLS feature set and 
encapsulate multiple simultaneous payload sessions within the context of the same tunnel. This 
can be observed even without access to key material from the participating parties by extracting 
session headers and analyzing whether session segments overlap. The final feature is linking 
number of communication behavior. This can be implemented by either single tunnel of 2 TCP 
ports or multiple tunnels established to accomplish SSL/TLS communication.  

4. Experiments  

4.1 Experimental setup 
Six software packages were selected as specimens for the feature analysis of message segment 
sequences. Table 1 shows the software specimens chosen for use in the experiments. To facilitate 
the evaluation of statistical properties, a training and an evaluation data set were captured for each 
specimen against an Apache 1.3.34 with built-in SSL/TLS module4. All features were extracted and 
analyzed for the accuracy of predictions obtainable for each combination and feature.  
 

                                                      
4http://slampp.abangadek.com/wiki/HomePage. 
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For each data set of each software, we collected 30 sample sets for analysis. Each sample set 
included the full communication traffic between client and the server. Each sample set in turn 
consists of a number of sessions which are established between 2 TCP ports, and we randomly 
chose one session from a sample set for extracting features. This results in the selection of 30 
sessions for both the training and test sets, respectively.  

 
Three different SSL/TLS tunnel tools were used to analyze tunneled traffic. SoftEther5 can establish 
a tunnel and present it as a proxy to client systems, e.g. for accessing services on the Internet. 
One of the applications of SoftEther is to tunnel through enterprise firewalls, which it can 
accomplish by using a connection to port 443 to link to a server outside the enterprise, and to 
forward arbitrary traffic from that endpoint. In our experiment, traffic in which a client used the 
SoftEther server as such a proxy for browsing WWW sites was captured.  

 
We used Titan FTP Server6 and Gene6 FTP Server7 to present SSL/TLS FTP communication 
implemented over SSL/TLS and chose WebDrive8 as a SSL-capable FTP client to produce our 
experimental data. For the SSL/TLS FTP server, explicit or implicit methods can be used to 
establish a SSL/TLS tunnel with an SSL/TLS FTP client. In our experiments, we set both client and 
server side to implicit mode, and captured traffic as the client arbitrarily accessed, deleted, or 
modified files through SSL/TLS tunnels. We captured and extracted all features from both the 
command and data channels used by the FTP protocol. Three web scanner tools were tested in 
our experiments, including Nikto 9, N-Stalker10, and WatchFire11. We captured traffic representing 
the scanner tool analyzing the test web site. For regular client-side HTTPS traffic, we used Firefox 
version 1.5.0.10 as our experimental browser client and captured data while a user browsed WWW 
sites.  

 
In this paper, we collected all raw data as the client party communicated with the server party over 
an undisturbed, isolated network. Thus, we assume that we collect 100% of network traffic without 
sequencing errors or missing packets; the incorporation of such noise into the data set is the 
subject of future research.  
Table 1: Software specimens using SSL/TLS 

Software Category  Client Side(software version,OS) Server Side(software version,OS)   
SSL/TLS VPN  SoftEther (1.00 on XP SP2)  SoftEther (1.00 on XP SP2)  
SSL/TLS FTP  WebDrive (7.21 on XP SP2)  GeneFTP (3.9.0 on XP SP2)   
SSL/TLS FTP  WebDrive (7.21 on XP SP2)  TitanFTP (5.34 on XP SP2)  
Web scanner  Nikto (1.34 on Linux 2.4.31) Web Server 

(Apache 1.3.34 on Linux 2.6.13.2)  
Web scanner  N-Stalker (6.0.1.120 on XP SP2) Web Server  

(Apache 1.3.34 on Linux 2.6.13.2)  
Web scanner  Watchfire (7.0 on XP SP2) Web Server  

(Apache 1.3.34 on Linux 2.6.13.2)  
Browser  FireFox (1.5.0.10 on XP SP2)  Web Server  

(Apache 1.3.34 on Linux 2.6.13.2)  

4.2 Extraction of proportion-based statistical patterns 
For extracting proportion-based statistical patterns, we selected 200 segments from the 31st to 
230th packets of 30 sessions each from the data sets to compute this pattern. There are only 2 
kinds of segment formats appearing during this period, including “SSL/TLS” application and “TCP” 
segments. The proportion of the statistical distribution is a pattern specific to a given software 
package. As the length of the fingerprint-related segments varies and does not contribute to this 
pattern, we have omitted the first 30 segments.  

                                                      
5 http://www.softether.com  
6 http://www.southrivertech.com. 
7 http://www.g6ftpserver.com/ 
8 http://www.southrivertech.com/products/webdrive/index.html 
9 http://www.cirt.net/code/nikto.shtml. 
10 http://www.nstalker.com. 
11 http://www.watchfire.com. 
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Table 2 shows our experimental data, and the percentage presents the proportion of “SSL/TLS” 
application to “TCP” segments in a specific tunnel. We used the  value of hypothesis tests to 
evaluate accuracy. Here, we only evaluated the mean value by hypothesis testing in which we 
used two-tailed tests without assumptions about the population standard deviation.  

P

Table 2: Proportion-based statistical patterns 
Traffic Category  µ  Training Set  µ  Testing Set  σ  Training Set  σ  Testing Set  P Value   
SoftEther  57.71   % 57.68%   0.031806  0.041032  0.9716  
Https  37.08   % 37.48%   0.018712  0.017542  0.2117  
Gene6FTP command 92.82   % 92.27%   0.023359  0.028579  0.2977  
Gene6FTP data  11.00   % 11.10%   0.008375  0.005632  0.3308  
TitanFTP command  92.33   % 91.52%   0.035703  0.018959  0.0188  
TitanFTP data  11.63   % 11.32%   0.028252  0.021192  0.4180  

4.3 Extraction of sub-sequence matching pattern 
For extracting sub-sequence matching pattern, we selected 200 segments from the 31st to 230th 
packets of 30 sessions of each data set to compute this pattern. We used local alignment to 
randomly compute every two sequences until we get 30 value of similarity. We chose the Smith-
Waterman algorithm implemented in Geneious as our local alignment technique. This allows the 
identification of patterns using default local alignment to compute similarities. Table 3 shows our 
experimental data, and the similarity levels of matching sub-sequences for given specific tunnels. 

 values were used to evaluate accuracy. As before, only the mean value was evaluated using 
two-tailed tests without assumptions about the population standard deviation.  
P

Table 3:Sub-sequence matching pattern 
Traffic Category  µ  Training Set  µ  Testing Set  σ  Training Set σ  Testing Set  P Value   
SoftEther  71.17%   70.27%   0.038801  0.02983  0.1035  
Https  85.54%   85.60%   0.029494  0.028333  0.3986  
Gene6FTP command 94.79%   93.56%   0.028492  0.029272  0.3494  
Gene6FTP data  97.60%   96.44%   0.017927  0.04175  0.1292  
TitanFTP command  92.73%   93.04%   0.027427  0.023033  0.4562  
TitanFTP data  98.50%   98.43%   0.008808  0.010148  0.7190  

4.4  Extraction of fingerprint patterns and other features 

4.4.1  Fingerprint 
Domain knowledge was applied to extract abstract segment information for identifying session 
fingerprints. In our experiments for this paper, we classified segments into categories based on the 
abstract protocol data units of the SSL/TLS protocol. These classifications are given a symbolic 
shorthand (also used in pattern matching) as shown in table 4. If a message segment contains one 
protocol data unit (PDU), this results in a single classification unit (letter), whereas a segment 
containing multiple PDUs will be classified as a sequence of units.  
Table 4: Rules of extracting abstract segment information 

Letter  Protocol  Abstract Information   
S  SSL/TLS  Client Hello  
H  SSL/TLS  Server Hello  
G  SSL/TLS  Change Cipher Spec  
M  SSL/TLS  Encrypted Handshake Message  
I  SSL/TLS  Certificate  
D  SSL/TLS  Server Hello Done  
K  SSL/TLS  Client Key Exchange  
X  SSL/TLS  Server Key Exchange  
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A  SSL/TLS  Application Data  
E  SSL/TLS  Encrypted Alert  
N  TCP  TCP Flow  
F  TCP  TCP FIN  

In our experiments, we randomly chose 30 sessions for each tunnel. In every session, selected 35 
segments from the first 30 and final 5 segments, and then classified segment information into sets 
of letters. We choose the mode from 30 sets of letters as the fingerprint. Table 5 shows the raw 
fingerprint data sets from all tunnels. As before, a noiseless capture is assumed, making this 
dependent solely on software stacks and combinations of client/server systems.  
Table 5: Raw fingerprint information 

Software Tunnels  Fingerprint   
SoftEther NNNS[HID][KGM][GM]NAAAAAAAANAAA–  

NAAAANANANEFNFN  
Https NNNSN[HIXD]N[KGM][GM]ANANAAAAAAN–  

NNNNNNNNNNFENFN  
Gene6FTP Command NNNS[HID][KGM][GM]ANAAAAAAAAAAA–  

AAAAAAAAAANFNFN  
Gene6FTP Data NNNNS[HID][KGM][GM]ANNNNNNNNNN–  

NNANNNNNNNNNNFN  
TitanFTP Command NNNS[HIXD][KGM][GM]ANAAAAAAAAAAA–  

AAAAAAAAAANFNFN  
TitanFTP Data NNNS[HIXD][KGM][GM]ANNNNNNNNNNNN–  

NNNNANNNNNNFNFN  
Nikto  NNNSN[HIXD]N[KGM][GM]AFAEFN  

(packet size :15)  
N-Stalker  NNNSN[HIXD][KGM][GM]AAENFNFN  

(packet size :16)  
Watchfire  NNNSN[HGM][GM]AAFNFN  

(packet size :13)  

4.4.2 Other features of interest 
There are several features of SSL/TLS channels which are not present in all implementations and 
may not manifest in each permutation and configuration which can also be of interest for 
fingerprinting and classification of encrypted channels. Table 6 presents features resulting from 
different SSL/TLS tunnel implementations, including variations in the resumption strategies for 
SSL/TLS handshakes, SSL/TLS segments crossing, and linking number.  
Table 6: List of other features of interest 

Software Tunnels  Resuming Handshake  Segments Crossing  Linking number  
SoftEther  No  No  Single  
Https  Yes  Yes  multiple  
Gene6FTP Command  No  Yes  multiple  
Gene6FTP Data  No  Yes  multiple  
TitanFTP Command  No  Yes  multiple  
TitanFTP Data  No  Yes  multiple  
Nikto  No  No  multiple  
N-Stalker  No  Yes  multiple  
Watchfire  Yes  No  multiple  

4.5  Features discussion 
Features of fingerprint, resuming handshake, segments crossing and linking numbers demonstrate 
100%  accuracy from our (noiseless) training data sets and testing data sets, indicating the 
expected large feature size allowing precise classification of tools even for a relatively coarse level 
of classification. Web scanner tools do not communicate with web servers as they interrupt 
communication sessions before transmitting payload data, so proportion-based or sub-sequence 
matching statistical patterns cannot be extracted from them. Moreover, the length of fingerprints in 
case of scanners is limited. As noted above, however, measurement data is simulated and 
occurred only over a lightly loaded local area network; both the use of different server system times 
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and software packages including different versions as well as their behavior under noisy conditions 
are subjects of future research.  

5. Experimental results and discussion 
The promising results of section 4 indicate that significant amounts of information useful for the 
forensic analysis of encrypted traffic without knowledge of keying material, albeit with significant 
variations in the accuracy with which individual applications (as opposed to SSL/TLS 
implementations over which these applications communicate) can be identified. However, The 
technique of extracting fingerprinting and behavioral characteristics can be used to identify several 
elements and permutations of the software stacks in use. Moreover, information and privacy 
leakage of software’s operations can be identified by observing protocol implementations, and this 
idea can be applied to all encrypted network protocols for forensic purposes. In accordance to our 
observations, more detail software operations can be identified by analyzing protocol 
implementation behaviors. While the specific operational individual implementations were not 
subject of investigations reported in this paper, the techniques we describe are readily applicable to 
obtaining finer-grained classification results from encrypted protocols. This information leakage 
does not originate with the protocol, which can be considered secure. Rather, inferences rely on 
how software implements a secure protocol, and legitimate variations in implementation behavior 
that are still within the confines of the specification. Thus, information leakage from protocol 
implementing is inevitable and needs to be checked (and potentially masked) if privacy or evasion 
of intrusion detection mechanisms is a concern.  

 
The fingerprints and behavioral patterns observed are functions of the endpoints involved in a 
session since negotiation behavior figures prominently in the SSL/TLS protocol. These can e.g. be 
formed by a SSL-capable FTP client communicating with a FTP server (directly of via proxy), 
communication between WWW client and server systems, or SSL VPN configurations. 
Fingerprinting techniques can be applied in a straightforward manner and are easily feasible in 
practical network forensics applications. For other traffic, statistical analysis yields more ambiguous 
results, so it may well be beneficial to concentrate solely on fingerprints as e.g. browsing behavior 
or interactions between web services and clients are more complex and would require more 
detailed statistical analysis incorporating more domain knowledge to gain results with adequate 
statistical significance. As noted above, patterns observed for SSL/TLS tunnels also depend on 
configuration of the software stacks in use, which introduces several additional degrees of freedom 
for profiling (e.g. there exist two methods to do SSL handshake in SSL FTP software, implicit and 
explicit methods). This can improve the accuracy with which an application/malware can be 
identified as this fingerprint pattern becomes more specific. 

 
Finally, it should be noted that we have merely presented an arbitrary selection of SSL/TLS 
implementations and applications using this approach; actual forensic work will require the creation 
and maintenance of a detailed database of fingerprint patterns for the various parameters such as 
host operating systems, SSL/TLS implementations, software (for positive and negative 
identification e.g. of malware), and configuration issues. We have, however, demonstrated that 
these patterns exist and can be readily extracted and classified.  

6. Conclusions 
In this paper we have presented an extension of the successful context of TCP session 
fingerprinting to the domain of SSL/TLS tunnels, which can provide important forensic information 
on the precise implementations and application programs using these SSL/TLS implementations. 
Such information can be particularly useful when trying to identify whether the encrypted and hence 
opaque data stream is emanating from a known and legitimate application program on a given host 
or whether the sessions originate with a potentially hostile unknown program such as e.g. a rootkit. 
We have also shown that the permutations of SSL/TLS implementations, network stacks, 
application configuration, and application data flow can be used to further provide evidence for 
characterizing the applications and endpoints of encrypted tunnels, also without requiring access to 
key material, and from observations solely at the network layer. Particularly for the latter we have 
investigated the use of sequence alignment and matching tools from the application domain of 
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bioinformatics, which, like network forensics, must also cope with noisy, incomplete data sets yet 
still be capable of adequate performance in sequence matching. Further tuning and adaptation of 
these pattern matching techniques, particularly in congested high-traffic environments is a subject 
for further research, as is further expansion of the database of configuration permutations since the 
results reported here represent only proof of principle. We also intend to investigate the behavior of 
real-time channels such as encrypted chat or voice over IP connections and their behavior based 
on similar fingerprinting and statistical analysis of other encryption and tunneling protocols such as 
IPSec.  
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