
A Capability-Based Transparent Cryptographic File System

Frank Graf
Institute for Graphic Interfaces

Seoul, Korea
frank.graf@igi.re.kr

Stephen D. Wolthusen
Department of Computer Science

Gjøvik University College
Gjøvik, Norway

swolthusen@ieee.org

Abstract

Data on the file system in mobile internetworked work-
ing environments are exposed data to a number of threats
ranging from physical theft of storage devices to indus-
trial espionage and intelligence activities. This paper de-
scribes a fully transparent, capability-based file system se-
curity mechanism for use in heterogeneous computing envi-
ronments with emphasis on the implementation on the Mi-
crosoft Windows NT/XP family of operating systems. This
mechanism can provide confidentiality and integrity protec-
tion for on- and off-line use through modular cryptographic
means and is interoperable between several operating sys-
tem platforms.

1. Introduction

Requirements for both industrial and governmental envi-
ronments increasingly demand that individuals be mobile
and collaborate both locally and across larger geographical
regions. Together with the significant increases in pro-
ductivity resulting from mobility and almost permanent
internetworking, a number of threats also gain in signifi-
cance, particularly in the area of storage and the exchange
of data and information. While the protection of network
environments through firewalls and cryptographic means
such as virtual private networks have both become part of
most current operating systems (OS). These can frequently
be configured to permit a certain level of interoperability
across operating systems and organizational boundaries.
This is not necessarily the case for storage and file systems.
While a number of cryptographic protection mechanisms
for file systems exist (cf. section 6), these are typically
limited in one or more aspects that were identified as crucial
for both addressing the pertinent threats and providing a
seamless and unencumbered operating environment for
users. The following provides the requirements and criteria
used in the design and development of a file system security
mechanism; several threats identified as the basis of this are
described later in this section.

Security Policy Support Most COTS operating systems
are limited in their ability to support dynamic and flexi-
ble security policies beyond discretionary and (in some
Unix derivatives) role-based access control mechanisms.
Moreover, such controls provide enforcement at the level
of OS data structures (and their respective external repre-
sentations in storage systems) and cannot be dynamically
configured to reflect changes in configurations such as
collaborative relationships or the ingress and egress of
parties from coalition environments. To support policies
that cannot be implemented using intrinsic OS mechanisms
and which also can provide identical semantics across
multiple platforms (see below), a mechanism orthogonal to
standard controls is therefore required. Such a mechanism
can e.g. provide enforcement for mandatory security policy
elements while leaving intact the expected semantics for
any user-defined discretionary security controls.

Interoperability Any storage security control mecha-
nism must provide interoperability at several layers both
within an individual host system and in interactions with
other hosts and storage subsystems. For a given system,
controls must not affect APIs and behavior of any interface
expected by both users and application programs operating
within the confines of any currently active security policy.
Moreover, controls must be capable of enforcing policies
regardless of the file system type. This requirement has
become increasingly relevant given removable media such
as memory sticks; such devices frequently use file systems
that cannot be replaced (e.g. because of hard-coded file
system structures) or which must be retained to ensure
interoperability between different OSes. Finally, most non-
trivial environments require the seamless internetworking
of multiple platforms, whether through exchange of remov-
able storage media such as CD-R or through network file
systems and storage area networks. Security controls must
therefore be capable of transparently handling all types



of file systems that may be directly attached in the form
of fixed or removable media as well as network attached
storage and other storage attached through network file
systems.

Usability Regardless of the security policies to be en-
forced and the potential for conflicts between policy and
expected or desired user behavior, the actual implementa-
tion mechanism must conform closely to expected behavior
for unprotected operation. Users should therefore not be
required to take explicit steps to conform with security
policy or to make use of the security mechanisms (e.g. con-
fidentiality and integrity protection) unless absolutely
necessary (e.g. in case of authentication). This also implies
that user-visible interfaces must be minimized and hence
that all policy enforcement must occur without requiring
changes and emendations to the application programming
interfaces used. Similarly, since file system properties
(e.g. file system or media types) are transparent to users,
it is also necessary for security mechanisms to retain this
transparency. This also applies to storage locations within
file systems; the use of separate container volumes with
fixed or pre-defined capacity would break the transparency
of mechanism.

Threats to storage mechanisms can be categorized into
on-line threats, i.e. occurring while a trusted OS is pro-
viding mediation to storage resources, and off-line threats
where no trusted mediation of access to storage resources
occur.

On-line threats For the purposes of this paper, only
software-based on-line threats are considered. These in-
clude:

Impersonation Attackers may gain access to credentials of
authorized users and can perform any action on files
for which the legitimate user is authorized.

Subversion Subversion can occur both at the level of user
privilege and at the system level; the latter is discussed
here under the heading of privilege escalation. By in-
ducing authorized users or processes to perform ac-
tions in the interest of the attacker or of the attacker’s
choosing, attackers can perform any action on files for
which the legitimate user is authorized [14, 2].

Privilege escalation In addition to performing actions as
part of subversion attacks (e.g. by editing privileged
executable code or data), attackers may gain access
to privileged execution environments or memory and
storage accessible only to the OS. In such a case the
complete behavior of the OS can be compromised as
well as any and all data processed by the given system.

It should be noted that mechanisms such as the one
described in this paper does not provide protection from

the privilege escalation threat category described above.
However, a capability-based supplemental security control
mechanism as discussed in section 3 (as well as a policy
mechanism, cf. section 2) can provide mandatory security
controls which at least partially counter impersonation and
subversion threats when coupled with strong authentication
mechanisms [9, 8].

Off-line threats This category includes both attacks oc-
curring locally while outside the control of a mediating op-
erating system (e.g. in case the operating system is not ac-
tive) and remotely. These include:

Removable mediaRemovable media, including exter-
nal hard disks, flash memory, and hybrid devices
(e.g. portable audio players, digital cameras) can be
easily acquired by an attacker or be inadvertently mis-
placed by authorized users. Similar considerations also
apply to portable computers.

Network file systems Storage over network file systems
may, depending on the trust status and security con-
trols of the file system used, also be considered as off-
line storage even though their use is transparent to an
operating system using such file systems on-line.

Network attached storage All considerations for network
file systems also apply to network attached storage;
however, NAS systems need not be part of a consol-
idated trust domain.

Storage area networksWhile typically part of a consoli-
dated trust domain, SAN systems may distribute the
content of a logical file system onto a dispersed set of
physical devices which may expose the physical media
to handling by attackers.

Foreign system accessHost systems may be operated us-
ing a foreign operating system or may have storage
media removed for access by such a system. The re-
sulting opportunities for unauthorized access are iden-
tical to those described above for removable media.

In each of these threat environments, the system can be
compromised since attackers can read and manipulate file
contents as well as file system structures. Such manipula-
tion may also include the insertion of subversion compo-
nents for later use (e.g. in case partial encryption or strong
authorization is used by the operating system under attack).
Also, the complete behavior of the OS (if a storage medium
containing OS components or other trusted objects is af-
fected) can be compromised as well in the process. Given
e.g. removable media and network-based storage, require-
ments for effective security for countering off-line threats
are increasingly adequate not only for sensitive areas but
for the protection of confidentiality and integrity of baseline
systems. File-based transparent encryption can mitigate this
threat.



2. Background

While the security mechanisms for file systems de-
scribed here can be used independently, a number of related
threats cannot be addressed adequately with storage and file
system based mechanisms alone. Most of these threats are
addressed as part of a comprehensive security policy defini-
tion and enforcement framework (COSEDA) providing for
the definition of arbitrary security policies for both local and
networked environments including coalition environments
and covering all external interfaces beyond file systems, in-
cluding network and device interfaces such as USB, serial,
parallel, and FireWire ports.

Together with the mechanisms described in this paper,
security controls can therefore ensure that activity involv-
ing devices and communication external to a given host
can be mediated at the most appropriate abstraction level
[24]. For example, the use of an IEEE 1394 interface to
connect two host systems (e.g. one under Microsoft Win-
dows XP and an Apple iPod device under the Linux OS).
On connecting systems, the plug-and-play subsystems will
perform bus enumeration and identify system and device
type classifications. Communication can now be mediated
or terminated based on policy decisions at the bus device
driver level [25]. However, particularly for interfaces such
as IEEE 1394 this may not be an appropriate level of gran-
ularity, since the interface can be used as a network connec-
tion, e.g. using the TCP/IP protocols. In this case, another
abstraction layer providing interception at the network pro-
tocol stack can perform policy-based mediation (in addition
to host OS firewalling mechanisms) [22].

However, if the same link is to be used for sharing file
systems (here, e.g. by the Linux iPod providing CIFS shares
via Samba services), the file system layer provides the ap-
propriate semantics instead of the preceding two layers of
abstraction. This results in increased efficiency in enforcing
security policies since the semantics of each layer can be
taken into account in policy decisions and can also provide
for more expressive policies that otherwise could not be for-
mulated or would be excessively complex. The security pol-
icy mechanism of the COSEDA program is fully described
in [24]; it permits the formulation of arbitrary security poli-
cies over abstract model systems, both formulated in a first
order formal theory. Given abstraction mechanisms based
on a lattice structure identified by formal concept analysis
of the model system and the ability to use automated reason-
ing techniques to deduce policy decisions within the frame-
work, policies can be formulated at appropriate abstraction
levels (e.g. staff groups and project documents) which are
then used to derive concrete actions and requirements at
lower levels (e.g. network and file system activities within
an OS). The formal model is mapped onto target OSes by
way of an interpretation of the formal theory; this typically

requires an intermediate step of creating a homomorphous
model for each target system.

However, since file system security requirements also
arise where only lightweight administrative models are fea-
sible or where full policy control over all system compo-
nents is not appropriate, a mechanism retaining most of the
flexibility in providing controls for file systems without the
need for centralized policy services and management is de-
sirable. Capability mechanisms as described below provide
such a level of control and flexibility and can be integrated
into host OSes in such a way that they can operate both on
stand-alone systems and in large, heterogeneous, and dis-
tributed environments. This combination of host OS secu-
rity controls for on-line access control and of capability-
based policy enforcement for mandatory controls and off-
line file system security provides a sufficient balance of con-
trols for most applications operating in a benign threat en-
vironment [4, 12, 11].

3. Capability Mechanism

Originally proposed by Dennis and van Horn [6], capa-
bilities have been employed successfully as a lightweight
foundation for security controls in several OSes and dis-
tributed environments [13, 18]. While simple capability
models are generally constructed as 3-tuples consisting of
an object identifier, an access rights statement, and a (typi-
cally random or derived through a one-way function from
the former tuple elements) capability identifier, the pur-
poses of the controls described in this paper require an ex-
tended capability model:

Definition 1 Capabilities are 5-tuples consisting of an ob-
ject identifier and a set of authorized operations(i, k, u, r, l)
where i is the unique identifier of the capability, k is the
cryptographic key material associated with the capability,
u is the identity of the entity to which the capability is as-
signed, r contains a list of access rights, and l is the expi-
ration time for the capability. Assignment or possession of
a capability is necessary and sufficient to gain access to an
object identified by the capability within the rights identified
by the respective element r. Capabilities C= (i, k, u, r, l)
satisfy the following security axioms:

1. Capabilities cannot be created by unauthorized
entities

2. Capabilities cannot be modified by unauthorized
entities

3. Entities can only create capabilities through
well-defined interfaces

4. Capabilities are only provided to entities whose
authorized operations match those described in
the capability tuple.



5. Capabilities cannot be used to gain access after
the expiration time has passed.

Unlike classical capability systems, identity-based
capability systems satisfying definition 1 do not suffer from
uncontrolled capability propagation [4] since any propa-
gation is tied to the identity embedded in the capability.
Therefore this can be taken into account when creating a
new capability for the entity to which (if so permitted by
the applicable policy) the access rights are to be extended
[9, 8]. A centralized system has no need for capability
lifetimes since it can perform online validation. This is
not necessarily possible for the systems considered here
since protected systems may intermittently be unable to
communicate with policy servers. The ability to delegate
capability checking provides for such time intervals and
also serves as an implicit time bound for capability revoca-
tion and renewal. This mechanism is thus suitable both for
standalone and distributed systems. Particularly in the latter
case, the capability mechanism also provides for aO(1)
mechanism to provide authorization independent of the
number of nodes within the distributed system, delegating
decisions to edge nodes.

Usability and Interoperability In case of file system
security mechanisms, the objectives of usability and inter-
operability are running in parallel to a considerable extent.
One of the core principles in usability is conformance to
user expectations, which parallels the requirement not to
change application behavior and minimal system changes.
By performing translation from encrypted to plaintext form
at the level of the file system interface, this objective can be
met for the host platform. More important, however, is the
design decision to encrypt and embed capability informa-
tion in place as well as to encipher file and directory names
in place (see section 4.1). This not only permits the use
of arbitrary local and remote file system networks but also
the interoperability with other operating system platform
implementations. An early prototype of the encryption
mechanism also exists for the Sun Solaris (SPARC), SGI
Irix (MIPS) and FreeBSD x86 platforms.

4. Implementation Aspects

Core elements of the implementation mechanisms used on
the Microsoft Windows NT/XP platform have been de-
scribed in earlier publications [24, 23]. In addition to ad-
ministrative functions for generating and maintaining capa-
bility lists (which are beyond the scope of this paper), the
implementation mechanism consists of two extensions to
the base OS. The first, to the identification and authentica-
tion subsystem, is described in section 4.1 while the second
consists of a file system filter driver intercepting file system
operations regardless of file system type (cf. [24]).

4.1. Identification and Authentication
The capability architecture requires strong authentication
for satisfying the requirements of definition 1; under the Mi-
crosoft Windows NT/XP architecture this is accomplished
by an extension of the Graphical Identification and Authen-
tication (GINA) mechanism of the base OS. To ensure over-
all system integrity and to protect against off-line manipu-
lation of the OS and cryptographic file system, a boot pro-
tection and system encryption mechanism is used (see [24]
for details). The OS mechanism provides for a well-defined
key sequence which is non-bypassable; this feature1 imple-
ments a switch to a desktop (i.e. an output rendering with
attached processes permitted to perform actions on the dis-
play) which cannot be accessed for input or output by appli-
cation programs that is always triggered by entering the sys-
tem attention sequence2. If triggered by software, the user
can also confirm the authenticity of this request by initiating
the non-bypassable system attention sequence (SAS), for
which the base OS guarantees that it cannot be intercepted
or simulated by application programs. Any impostor appli-
cation displaying an authentication request similar to that
of the OS is therefore disconnected from user I/O once the
SAS is issued, and only the legitimate request can be dis-
played. Moreover, the OS also ensures that no application
program can intercept communication with the display once
the SAS has been issued. This can then be used to complete
the authentication and authorization mechanism. The im-
plementation is based on chaining a GINA DLL in the lo-
gin process after the system login used. This provides flex-
ibility in environments where the base OS I&A mechanism
has been replaced by a third party mechanism (single sign
on systems or network OSes such as Novell NetWare) and
is accomplished through multifactor authentication. In the
simplest case, a memory token (e.g. an USB stick) contain-
ing key material must be provided prior to authentication,
which typically occurs at login time for a given user. In ad-
dition to the regular login procedures, a PIN or passphrase is
then requested from the user, which is then used to decrypt
the capability list assigned to the user based on a symmet-
ric key mechanism. Alternatively, for environments where
a public key infrastructure is available, a PKI-based mech-
anism for retrieving capability material is provided. This
mechanism is implemented based on the Microsoft PKI and
PC/SC smart card standard and supports both base and ex-
tended providers including the Entrust PKI. Moreover, in
this case the hybrid-encryted capability list can not only be
retrieved from local memory but in networked environments

1A requirement that originated in the TCSEC B2 class but which was
nevertheless included in the Windows NT design [21].

2However, it should be noted that one must still assume that none of
the device driver or other kernel components involved in I/O are tainted or
compromised; trusted computing extensions to the basic system platform
and hardware proposed by the Trusted Computing Group may in the future
provide additional assurance for such circumstances.



can also be queried from an LDAP or Microsoft Active Di-
rectory server. Regardless of the mechanism for accessing
the capability list, only the kernel extension for the crypto-
graphic file system performs user I&A and has access to the
decrypted capability list thus associated with the user.

4.2. Enforcement of Capability Properties
The implementation of the capability mechanism described
here is based on a minimally modified host OS and
therefore cannot make use of capability features in either
the OS itself or system hardware [13, 17, 18]. Instead,
the mechanism must be enforced primarily through cryp-
tographic means. The implementation of the enforcement
mechanism in the form of an upper level file system filter
driver provides a natural control flow where the manda-
tory controls imposed by the capability mechanism are
applied first, and discretionary host OS controls3 applied
subsequently, yielding the desired semantics. This layering
provides several important benefits. First, it permits the
presentation of a completely unchanged API to the upper
layers of the OS and hence also to application programs in
that operations conforming to the security policy are seen
by these layers as in cases where no capability mechanism
or encryption were taking place. Second, this mechanism
is independent of the file system to which it is attached
(for a description of the attachment and system-wide
encryption mechanisms used to protect file system integrity
see [24]), supporting e.g. local FAT and NTFS file systems
but also UDF file systems used for transparent CD-R(W)
or DVD-R(W) writing or even custom file systems used by
application layer superencryption mechanisms. Moreover,
this mechanism is also capable of supporting arbitrary
network file systems and redirectors, which is important
for interoperability (cf. section 3). For these file systems,
regular semantics are retained so that directory structures
are maintained and individual files can be handled. Files
are individually encrypted and chained with a capability
descriptor, while file and directory names themselves can
also be encrypted to limit covert channels and inadvertent
disclosures. Without the full COSEDA architecture, the
enforcement of capability-based access rights is limited
to file system operations and objects stored within file
systems. Since full control over the life cycle of a file
object (e.g. residence in memory) is beyond the scope
of the file system in all modern virtual memory based
operating systems, the controls are limited to a subset of
operations on the file, namely to the creation or opening of
file objects, and reading and writing of files. Of primary
interest in this process areIRP MJ CREATE requests.
This I/O request packet (IRP) is always issued when a
file is accessed for the first time (not just for file creation)

3For Microsoft Windows NT/XP, these are ACL entries applied either
directly or through Active Directory’s group policy mechanism

by an upper level function of a process; where additional
information is needed about a file, a subordinate request
in the form of anIRP MJ QUERYINFORMATIONcan
provide this data. For operations on existing files, the
end of the file is read and it is determined whether this
constitutes a capability trailer (CT). This step is necessary
since it cannot be determined solely from a file’s location
whether it was under the control of the capability mech-
anism. If present, the CT is decoded and the identifier
is compared against the capabilities of the user identified
in the process of accessing the file. In case of a match,
all subsequent read and write operations are transparently
encrypted and decrypted, respectively. Upon closing files,
an IRP MJ CLEANUPIRP is sent by the I/O Manager;
this request is used to re-compute the CT and affix it to
the end of the file in case the file content and size of the
file has changed. Similarly, theIRP MJ CLOSErequest
must also be processed since the internal bookkeeping
tables associated with the file object must be released. For
newly created files, the capabilities associated with a file
are determined by list structures maintained by the security
subsystem detailing which file systems, directories, and
files are to be associated with certain capabilities. This
requires the creation of a new CT and new entries for
internal table entries for file objects; operations are iden-
tical to those outlined above for existing objects. Since
both mode of operation and cipher used (e.g. AES-192
in CBC mode) can result in padding, and the CT also
induces additional space requirements, additional storage
must be associated with each file. Moreover, to ensure file
system independence, it is not possible to store this data
in alternate data streams or separate files since these may
not be available on all OS and file system permutations.
The amended file sizes themselves must not be revealed
to OS levels above the filter driver itself since this would
violate the transparency requirement. Thus, the filter driver
must adjust the file size reported by underlying file systems
in IRPs including IRP MJ QUERYINFORMATION,
IRP MJ SET INFORMATION, IRP MJ DIRECTORY
CONTROL, and IRP MJ QUERYDIRECTORYrequests

which can be used to adjust and inquire file lengths
[15, 16, 24]. To minimize the state that needs to be
maintained in each instance, a single VM page (4kBytes)
is used for both alignment and for recording the capa-
bilities associated with a given file. This, based on an
capability identifier size of 20 bytes permits up to 200
separate capabilities to be associated with an individual file.
Remaining space on the page is used up by an (optional)
integrity protection value (up to 512 bits) and up to 30
bytes for padding block ciphers as well as the number of
capability records. Attackers cannot gain access to a file by
changing or adding capability identifiers since this would
not affect the (symmetric) key with which the file was



encrypted. Depending on the mode of operation and use of
the integrity protection mechanism, an attacker may cause
changes to ciphertext resulting in undesirable changes to
plaintext. Integrity protection requires computation of a
cryptographic hash over the entire length of the file prior
to use; while current computer systems provide adequate
speed for cryptographic hash algorithms4, the storage I/O
required and subsequent modification of the file system
cache can have significant performance implications in
case of larger files. Capabilities can be created and revoked
centrally (use of the mechanism on an individual system
can be considered a degenerate case) and are transmitted
to edge devices over a trusted channel (as noted in section
4.1, this can occur through shared secrets or through hybrid
encryption where a PKI is available). Capabilities are
issued in the form

i, u, Eki
u
(u, r, l, k⊕ Ri), SA(H{Eki

u
(u, r, l, k⊕ Ri)})

such thatH is a cryptographic hash function that is
preimage and second preimage secure as well as collision-
resistant.S is a digital signature algorithm used to both tie
the identity of a user or group to a capability identity and
to provide authenticity of the issued capabilities. The in-
dex i is a number that merely serves as an index and to
link CTs to capabilities; unlike in sparse capability archi-
tectures, it is not part of the protective mechanism itself.
The constructEki

u
is an encryption mechanism specific to

a user or to a group with a key that can be specific to the
index i but must be specific to the user or groupu; this
may in the simplest case be a password-based symmetric
cipher but is typically a hybrid algorithm tied to a user or
group.R is a secret random number indexed by the capabil-
ity number and shared in advance by the capability issuer
and validating edge nodes and serves to mask the key ma-
terial to users. This construct assumes thatk provides ran-
domization and masking of the hash function input in case
asymmetric signature mechanisms are used. In addition, a
simple signed revocation list is also published periodically
by the capability issuer. In ascertaining the rights of a user
to a given object, each CT index obtained from the object is
matched against the list of revoked capabilities, then against
those of the given user. In case of the first match, the capa-
bility mechanism must decryptEki

u
(u, r, l, k ⊕ Ri) and ver-

ify the validity of the signatureSA(H{Eki
u
(u, r, l, k ⊕ Ri)}),

verifying the match between the user identity stored in the
capability with the user identity obtained from the trusted
computing base (TCB). Subsequently, the expiry time of the
capabilityl must be matched against the current timestamp
and the list of rightsr against the desired operation. If any
of these steps fail, the next capability from the user or ob-
ject list are matched until all possibilities are exhausted. In

4with moderate optimization, SHA-1 reaches 68 MB/s on a 2 GHz Intel
P4 system whereas SHA-256 reaches 44 MB/s.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

128 512 1K 2K 4K 10K 100K

ti
m
e

 [
s
e
c
]

file size [bytes]

Copying files
ENC u2u
CAP u2u
ENC e2u
CAP e2u
ENC u2e
ENC e2e

Figure 1. Copy operations

case of success, the key is decrypted and unmasked with
the index-specific maskerRi and used for encryption and
decryption of the given file. In writing the file’s CT list,
the mechanism can subsequently update entries by remov-
ing expired entries and inserting new entries obtained from
the capability issuer. It should be noted that the multiple-
match mechanism provides a relatively elegant mechanism
for chaining limited-lifetime capabilities and for modify-
ing access rights, typically some of the more problematic
aspects of a capability architecture. This mechanism also
replicates to a limited extent the dynamic policy-based se-
curity controls provided by the full COSEDA architecture.
The ciphers and algorithms used (here: SHA-1, RSA-1536,
and AES-192) are fully modular and can be replaced with
functional equivalents where warranted by threat assess-
ments and cryptographic requirements.

5. Experimental Results

Both capability-based systems and on-line encryption
mechanisms have long been associated with performance
concerns. For capability systems, the significant opera-
tions in this process are the checking of capability rights
and their revocation since these are the operations occur-
ring with the highest frequency. The following viewgraphs
from experimental (unoptimized and heavily instrumented
code) demonstrate the relative cost of capability-based en-
cryption to be very moderate. The graphs compare baseline
operations (no encryption/decryption) to non-capabilty en-
cryption (denoted “ENC”) and capability-based encryption
(denoted “CAP”). Since the operations in question are oc-
curring asynchronously, the differences between minimum
and maximum time required are significant, but the mean
shift can be seen to be very limited. It should be noted that



 0

 0.05

 0.1

 0.15

 0.2

100K10K4K2K1K512128

ti
m
e

 [
s
e
c
]

file size [bytes]

Modifying files
unencrypted (ENC)

unencrypted (ENC,CAP)
encrypted (ENC)
encrypted (CAP)

Figure 2. Modifying operations

the speed of the encryption mechanism itself is in this case
heavily dominated by the unoptimized encryption imple-
mentation used in this case, but is irrelevant for the purposes
of comparing the non-capabilty encryption and capability-
based encryption mechanisms. Figure 1 illustrates the time
differences for copying data from one path to another for
varying file sizes (in the key, “u” and “e” are shorthands
for unencrypted and encrypted paths), while figure 2 shows
time differences for modifying data in situ. In each case, the
test was performed for files of different sizes and repeated
100 times. Range bars are indicative of the strong influence
on caching and concurrent operations of the OS.

6. Related Work

Security controls at the file system level are provided by
virtually all general-purpose OSs; however, the limitations
of file system protection only via data structures maintained
by the operating system have long been obvious. Mecha-
nisms which provide off-line enforcement of security poli-
cies or access control mechanisms generally incorporate en-
cryption mechanisms; while a large number of specialized
container volume type systems exist, these do not meet the
transparency requirement that is paramount to usability of
such security controls. Most documented systems are based
on the Unix OS family; however, the underlying principles
documented there can generally be transferred to other OS
families. One of the earliest transparent mechanisms is the
Cryptographic File System (CFS) for the Unix OS family.
In this approach, users individually associated key material
with certain directories. The files in these directories in-
cluding the entries representing the pathname components
were transparently encrypted and decrypted with the spec-
ified key without further user intervention after setting the
key in such a way that plaintext is never stored on a disk
or sent to a remote (NFS) file server. The implementation
relied on the redirection of file systems through the mecha-

nism used for NFS external to the OS kernel and user space
processes for communicating key and directory information
to this subsystem from individual users [3]. This was later
migrated and integrated into the Linux OS by in the TCFS
system [5]. This approach has the advantage of not being
limited to specific devices attached to a given node as well
as being able to discern among multiple users of the same
system, problems that are immanent to simple volume en-
cryption systems. The Secure File System (SFS) [10] repre-
sents another mechanism for providing cryptographic secu-
rity to Unix-based systems at the user level based on earlier
work on the UFO user-space file system extension mecha-
nisms [1]. Unlike the previously described systems, SFS
permitted the coordinated use of multiple client systems
where individual users were authenticated using smart cards
and access control was accomplished using a central server,
the Group Server which maintained access control lists. An-
other approach, based on the observation that the process-
ing capabilities of storage devices are reaching levels pre-
viously associated with general purpose computer systems
[20, 7] was pursued in the NASD system, which embeds
an OS within storage devices communicating via RPC or
translations of RPC to NFS and includes survivability and
intrusion detection mechanisms in the form of journaling
and version retention for operations. The approaches for
adding security functionality to the Unix operating system
pursued by CFS, TCFS, and SFS suffer from severe perfor-
mance penalties due to the cost of changing between privi-
leged and unprivileged modes of operation. An alternative
to this approach for Unix-based systems was proposed in
the form of an interface at the VFS/VNode level but was
not incorporated into mainstream systems [19]; however, a
direct manipulation of the modular file system is feasible
for most Unix variants [27, 26].

7. Conclusions

This paper has presented a transparent and usable
security control that can be added seamlessly to stan-
dard off-the-shelf operating systems. Transparent policy
enforcement is provided both on- and off-line through
cryptographic mechanisms based on a capability architec-
ture that is interoperable across multiple heterogeneous
OS platforms and is independent of specific file system
features. We demonstrated that the performance impact of
using a capability-based rights architecture is limited rela-
tive to the impact for encryption and decryption, although
the encryption mechanisms used in this case were heavily
instrumented and not at all optimized for performance.
Future work includes the integration of capability-based
rights mechanisms into a distributed security architecture
that not only encompasses file systems but also ensures that
access to other interfaces is protected by a similar approach
to efficient and inobtrusive mandatory security controls.



Acknowledgments Parts of this work was performed at
Fraunhofer-IGD, Darmstadt, Germany. Parts of this work
were supported by the Korean MIC (Ministry of Informa-
tion and Communication) Grant (A1100-0401-0143).

References

[1] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman. Ex-
tending the Operating System at the User Level. In USENIX
Association, editor,Proceedings of the 1997 USENIX An-
nual Technical Conference, pages 77–90, Berkeley, CA,
USA, June 1997. USENIX.

[2] E. Anderson III. A Demonstration of the Subversion Threat:
Facing a Critical Responsibility in the Defense of Cy-
berspace. Master’s thesis, Naval Postgraduate School, Mon-
terey, CA, USA, 2002.

[3] M. Blaze. A Cryptographic Filesystem for Unix. InPro-
ceedings of the 1st ACM Conference on Computer and Com-
munications Security, pages 9–16, Fairfax, VA, USA, Nov.
1993. ACM Press.

[4] W. E. Boebert. On the Inability of an Unmodified Capabil-
ity Machine to Enforce the *-Property. InProceedings of
the 7th DoD / NBS National Computer Security Conference,
pages 291–293, Gaithersburg, MD, USA, Sept. 1984.

[5] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano.
The Design and Implementation of a Transparent Crypto-
graphic File System for UNIX. In USENIX, editor,Pro-
ceedings of the 2001 USENIX Annual Technical Conference
(FREENIX Track), pages 199–212, Boston, MA, USA, June
2001. USENIX.

[6] J. B. Dennis and E. C. van Horn. Programming Seman-
tics for Multiprogrammed Computations.Communications
of the Association for Computing Machinery, 9(3):143–155,
Mar. 1966.

[7] G. R. Ganger and D. F. Nagle. Enabling Dynamic Security
Management of Networked Systems via Device-Embedded
Security. Technical Report CMU-CS-00-174, Carnegie Mel-
lon University School of Computer Science, Pittsburgh, PA,
USA, Dec. 2000.

[8] L. Gong. A Secure Identity-Based Capability System. In
Proceedings of the 1989 IEEE Symposium on Security and
Privacy (SOSP ’89), pages 56–63, Oakland, CA, USA, May
1989. IEEE Computer Society.

[9] L. Gong. On security in capability-based systems.ACM
Operating Systems Review, 23(2):56–60, Apr. 1989.

[10] J. Hughes, M. O’Keefe, C. Feist, S. Hawkinson, J. Perrault,
and D. Corcoran. A Universal Access, Smart-Card-Based
Secure File System. InProceedings of the Atlanta Linux
Showcase, Atlanta, GA, USA, Oct. 1999.

[11] P. A. Karger.Improving Security and Performance for Capa-
bility Systems. PhD thesis, University of Cambridge Com-
puter Laboratory, University of Cambridge, Wolfson Col-
lege, UK, Mar. 1988. Technical Report UCAM-CL-TR-149.

[12] P. A. Karger and A. J. Herbert. An Augmented Capability
Architecture to Support Lattice Security and Traceability of
Access. InProceedings of the 1984 IEEE Symposium on
Security and Privacy (SOSP ’84), pages 2–12, Oakland, CA,
USA, May 1984. IEEE Computer Society.

[13] H. M. Levy. Capability-Based Computer Systems. Digital
Press, Bedford, MA, USA, 1984.

[14] P. A. Myers. Subversion: The Neglected Aspect of Com-
puter Security. Master’s thesis, Naval Postgraduate School,
Monterey, CA, USA, 1980.

[15] R. Nagar.Windows NT File System Internals: A Developer’s
Guide. O’Reilly & Associates, Sebastopol, CA, USA, 1997.

[16] M. E. Russinovich and D. A. Solomon.Microsoft Windows
Internals. Microsoft Press, Bellevue, WA, USA, 4th edition,
2005.

[17] R. D. Sansom, D. P. Julin, and R. F. Rashid. Extending
a Capability Based System into a Network Environment.
In W. Kosinsky, J. Garcia-Luna, and F. Kuo, editors,Pro-
ceedings of the ACM SIGCOMM Conference on Communi-
cations Architectures & Protocols (SIGCOMM ’86), pages
265–274, Stowe, VT, USA, Aug. 1986. IEEE Computer So-
ciety.

[18] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a
Fast Capability System.ACM Operating Systems Review,
33(5):170–185, Dec. 1999. Proceedings of the 17th Sympo-
sium on Operating Systems Principles (17th SOSP’99).

[19] G. C. Skinner and T. K. “Stacking” Vnodes: A Progress Re-
port. In USENIX, editor,Proceedings of the Summer 1993
USENIX Conference, pages 161–174, Seattle, WA, USA,
June 1993. USENIX.

[20] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing Storage: Protecting
Data in Compromised Systems. InProceedings of the 4th
Symposium on Operating Systems Design and Implementa-
tion (OSDI ’00), pages 165–180, San Diego, CA, USA, Oct.
2000. USENIX.

[21] United States Department of Defense.DoD 5200.28-STD:
Department of Defense (DoD) Trusted Computer System
Evaluation Criteria (TCSEC), 1985.

[22] S. Wolthusen. Tempering Network Stacks. InProceedings
of the NATO RTO Symposium on Adaptive Defense in Un-
classified Networks, Toulouse, France, Apr. 2004. NATO
Research and Technology Organization.

[23] S. Wolthusen. Molehunt: Near-line Semantic Activity Trac-
ing. In Proceedings from the Sixth Annual IEEE SMC
Information Assurance Workshop, United States Military
Academy, West Point, NY, USA, June 2005. IEEE Press.

[24] S. D. Wolthusen.A Model-Independent Security Architec-
ture for Distributed Heterogeneous Systems. Logos Verlag,
Berlin, Germany, 2003.

[25] S. D. Wolthusen. Goalkeeper: Close-In Interface Protection.
In Proceedings 19th Annual Computer Security Applications
Conference (ACSAC’03), pages 334–341, Las Vegas, NV,
USA, Dec. 2003. IEEE Press.

[26] E. Zadok. FiST: A System for Stackable File System Code
Generation. PhD thesis, Columbia University, New York,
NY, USA, May 2001.

[27] E. Zadok, I. Badulescu, and A. Shender. CryptFS: A Stack-
able VNode Level Encryption File System. Technical Re-
port CUCS-021-98, Columbia University Department of
Computer Science, New York, NY, USA, June 1998.


