
An Analysis of Cyclical Interdependencies in
Critical Infrastructures

Nils Kalstad Svendsen1 and Stephen D. Wolthusen1,2

1 Norwegian Information Security Laboratory, Gjøvik University College, P.O. Box
191, N-2802 Gjøvik, Norway

2 Information Security Group, Department of Mathematics, Royal Holloway,
University of London, Egham Hill, Egham TW20 0EX, UK

Abstract In this paper we discuss the properties and algorithmic meth-
ods for the identification and classification of cyclical interdependencies
in critical infrastructures based on a multigraph model of infrastruc-
ture elements with a view to analyze the behavior of interconnected
infrastructures under attack. The underlying graph model accommo-
dates distinct types of infrastructures including unbuffered classes such as
telecommunications and buffered structures such as oil and gas pipelines.
For interdependency analyzes particularly between different infrastruc-
ture types, cycles multiple crossing infrastructure sector boundaries are
still relatively poorly understood, and their dynamic properties and im-
pact on the availability and survivability of the overall infrastructure is
of considerable interest. We therefore propose a number of algorithms for
characterizing such cyclical interdependencies and to identify key charac-
teristics of the cycles such as the strength of the dependency or possible
feedback loops and nested cycles which can be of particular interest in
the development of mitigation mechanisms.

Keywords: Multigraph models, interdependency analysis, multi-
flow models

1 Introduction

One of the key characteristics of critical infrastructures is the level of intercon-
nectedness and hence interdependency required for fully functional operation.
At the level of individual infrastructure sectors (e.g. telecommunications, water
supply, financial services, or the electric power grid) or at least for individual
network operators, models exist which allow both monitoring and predictive
analysis. While these models may explicitly or implicitly incorporate individual
dependencies on other infrastructures, this is typically not done in a systematic
fashion which would allow the identification and characterization of interdepen-
dency cycles spanning multiple infrastructure sectors and infrastructure oper-
ators. However, particularly when assessing the potential impact of targeted
attacks and the robustness of infrastructure against such attacks, these are vi-
tal characteristics which are captured only inadequately by statistical reliability

2

models as the latter generally assume independent random variables with well-
characterized probability density functions for modeling infrastructure compo-
nent failures. While linear dependencies are straightforward to identify, cyclical
interdependencies leading to feedback cycles are less obvious and require analyt-
ical or simulative tools for their identification and evaluation. The description
and analysis of such dependency cycles is therefore of considerable interest for
gaining an understanding of the robustness and particularly dynamic character-
istics of critical infrastructures under attack at larger national and international
levels. Based on domain-specific metrics of the strength of interdependency such
an analysis building on a sufficiently detailed model based on directed multi-
graphs can — beyond what can be learned from the identification of strongly
connected components as reported in earlier research [1–3] — identify cycles of
dependencies of a certain strength as well as the most significant dependencies
within such cycles. However, it is another characteristic that vertices and in some
cases edges are shared between multiple cycles which can also intersect, with im-
plications for nested feedback cycles when analyzing the dynamic effects of such
interdependencies. Several properties of interdependency cycles are therefore of
particular interest. These include algorithms for the identification of cycles as
well as the discovery of topological structures and other static properties but
also include dynamic properties such as the duration and other characteristics
of feedback loops propagating through the individual and interconnected cycles
where multiflow models offer an elegant formalism for answering some algorith-
mic questions which may be posed in this context. The remainder of this paper is
therefore structured as follows: Section 2 briefly sketches the multigraph model
underlying the work reported here, while section 3 discusses the properties of
cyclical interdependencies incorporating multiple types of infrastructures. Sec-
tion 4 then derives formal descriptions of such cycles using both graph statistics
and flow formalisms. Both of these models are equilibrium-based and provide
only limited insight into the processes leading to such equilibria, however. Sec-
tion 6 briefly reviews selected related work before section 7 provides conclusions
on our results and an outlook on ongoing and future work.

2 Multigraph Model

This section summarizes the essential parts of the multigraph model of critical in-
frastructure previously introduced by the authors [1–3]. In the model interactions
among infrastructure components and infrastructure users are modeled in the
form of directed multigraphs, which can be further augmented by response func-
tions defining interactions between components. The vertices V = {v1, . . . , vk}
are interpreted as producers and consumers of m different types of services,
named dependency types. Transfer of services takes place along the edges con-
necting the nodes in the network. Each edge can transport or transfer one de-
pendency type dj chosen from the set D = {d1, . . . , dm}.

In the general case it is assumed that all nodes va have a buffer of volume
V j

a (indicating a scalar resource; this may represent both physical and logical

3

resources and, moreover, may be subject to further constraints such as integral
values) for each dependency type dj . Assuming that the amount of dependency
type dj in node va can be quantized as N j

a . For each node we can then define
a capacity limit NMax(va, dj) in terms of the amount of resource dj that can be
stored in the node. The dependency types are classified as ephemeral (V j

a = 0 for
all nodes va, and it follows that NMax(va, dj) = 0), storable and incompressible
(NMax(va, dj) = ρVa, where ρ is the density of the resource), or storable and com-
pressible (NMax(va, dj) = PMax(va, dj)Va, where PMax(va, dj) is the maximum
pressure supported in the storage of resource dj in the node va). Further refine-
ments such as multiple storage stages (e.g. requiring staging of resources from
long-term storage to operational status) and logistical aspects are not covered at
the abstraction level of the model described here. Non-fungible resources must
be modeled explicitly in the form of constraints on edges or dependency sub-
types. Pairwise dependencies between nodes are represented with directed edges,
where the head node is dependent on the tail node. The edges of a given infras-
tructure are defined by a subset E of E = {e1

1, e
1
2, . . . , e

1
n1

, e2
1, , . . . , e

m
nm
}, where

n1, . . . , nm are the numbers of dependencies of type d1, . . . , dm, and ej
i is the

edge number i of dependency type j in the network. A further precision of given
dependency, or edge, between two nodes va and vb is given by the less compact
notation ej

i (va, vb). In addition to the type, two predicates CMax(e
j
i (va, vb)) ∈ N0

and CMin(ej
i (va, vb)) ∈ N0 are defined for each edge. These values represent the

maximum capacity of the edge ej
i (va, vb) and the lower threshold for flow through

the edge. Hence, two g ×m matrices, where g = |E| and m is the number of de-
pendency types, CMax and CMin are sufficient to summarize this information.

Let rj
a(t) be the amount of a resource of dependency type j produced in node

va at time t. D(t) is defined to be a k×m matrix over Z describing the amount
of resources of dependency type j available at the node va at time t. It follows
that the initial state of D is given by Daj(0) = rj

a(0), and for every edge in E

Response
function

e1
2

e1
1

e2
4

e2
3

e2
5

D1

D2

e1
6

e1
7

e3
8

buffers

Figure 1. The parameters that define the functionality of a node, and its outputs

4

we can define a response function Rj
i (va, vb) :

Daj × V j
a ×N j

a ×NMax(va, j)× CMax × CMin → N0 (1)

that determines the i-th flow of type j between the nodes va and vb (illustrated
by fig. 1). The function Rj

i (va, vb) w.l.o.g. is defined as a linear function, and
may contain some prioritizing scheme over i and vb. By constraining the response
function to a linear function and discrete values for both time steps and resources,
linear programming approaches can be employed for optimization of the relevant
parameters; interior point methods for this type of problem such as [4, 5] can
achieve computational complexity on the order of O(n3.5), making the analysis
of large graphs feasible.

Given the responses at time t, the amount of resource j available in any node
va at time t + 1 is given by

Daj(t + 1) = rj
a(t) + N j

a(t) +
∑

i,s|ej
i (vs,va)∈E

Rj
i (vs, va, t). (2)

A node va is said to be functional at time t if it receives or generates the resources
needed to satisfy its internal needs, that is Daj(t) > 0 for all dependency types
j which are such that ej

i (vb, va) ∈ E , where b ∈ {1, . . . , a− 1, a + 1, . . . k}. If this
is the case for only some of the dependency types the node is said to be partially
functional, and finally of no requirement are satisfied the node is said to be
dysfunctional. For further argumentation on the motivation for the model, the
granularity of the model, and example networks and scenarios we refer to [2].
For further modeling of networks carrying ephemeral and storeable resources,
and the reliability of the network components we refer to [3].

3 Mixed Type Cycles

In [2] we demonstrate the effect of cascading failures through mixed types infras-
tructure networks. The design of network topologies is traditionally done with
great care in critical infrastructures, following appropriate standards and regula-
tions. With an appropriate approach in the design phase undesirable configura-
tions within an infrastructure may be avoided. Our work focuses on approaches
and analysis which can be performed such networks are interconnected to those
involving other dependency types. This section therefore presents selected meth-
ods for detecting and classifying cycles across critical infrastructures.

3.1 Definition of Mixed Type Cycles

In general a cycle is a walk W = vx1e
d1
x1

vx2e
d2
x2

. . . e
dn−1
xn−1vxn

, through a subset of
V, which is such that vxi

and vxj
are pairwise distinct for 1 ≤ i < j < n, and

vx1 = vxn
. If di 6= dj for some i and j we say that the cycle is a mixed type cycle,

meaning that there are different dependency types linking the nodes together.

5

c
de2

2

b

e2
1

e

e3
1

a

e1
1

e3
2

Figure 2. A mixed type cycle through three infrastructures

A simplified example of such a configuration can be seen in figure 2, where
continuous, short, and long-dashed edges represents different dependency types.
We easily see that the figure contains several mixed type cycles, among these the
cycle ae1

1be
2
1ce

2
2de3

1ee
3
2. However, we cannot say anything about how these cycles

interact without making further assumptions regarding the properties of the
different dependency types and vertex behavior. Another issue worth exploring
is the situation of node c. The owner of node c may think that the functionality
of this node has only one external dependency, the one coming from node b.
From the figure we see that the functionality of b is not at all straightforward.
The following provides several mechanisms for exploring dependency properties,
particularly the role of cyclic dependencies in the functionality of systems.

3.2 Detection of Mixed Type Cycles

Detection of mixed type cycles consists of two steps. First, all cycles of the
typeless network are detected. The typeless network is the mapping of a network
where each edge is associated with a dependency type to a network where an edge
defines a dependency between the tail and the head node. Detection of cycles
in networks is done by applying a classical depth first search on the network,
where edges classified as back edges identifies the existence of a cycle [6]. The
run time of this approach is Θ(|V|+|E|), where |V| and |E| are the cardinalities of
the respective sets. The second part is to determine the consecutive dependency
types of the cycle edges. If all edges of a cycle are of the same dependency
type the cycle is not of mixed type, thus it is discarded. If there is at least two
dependency types included in the cycle, it is a mixed type cycle.

4 Classification of Mixed Type Cycles

This section explores approaches to determine the importance of mixed type cy-
cles. We propose two approaches to explore these features in large interconnected

6

infrastructures. One approach is based on the statistical properties of the nodes
of a cycle and their surroundings, the other is based on flow considerations in
the network, bottlenecks and min-max cuts

4.1 Statistical approach

A statistical approach to classify mixed type cycles is appropriate in two different
situations. It is particularly useful for gaining a quick overview of a given con-
figuration where only limited computational resources are available in relation
to the size of the network to be investigated. The second situation is for large
infrastructures where all the information from the model described in section 2
is not available. In this case the statistical model represents the achievable limits
for analysis.

The traditional approach to network statistics (refer to e.g. [7] for an overview
of network statistics) is to focus on either local or global statistics. For the
purposes of the application area considered in this paper, mixed type cycles can
be considered as a regional or mezzanine level of network statistics, describing
the statistical properties of a subset of the nodes of a network, i.e. the nodes
included in one or several cycles. A network statistic should describe essential
properties of the network, differentiate between certain classes of networks and
be useful in algorithms and applications [7].

Cycle length The length of a cycle is a very basic characteristic. Short cycle
length might indicate that the cycle likely covers a small number of dependency
types. In this way the cycle is more likely to be detected in naive approaches
and the importance of the cycle might be more predictable. It is important to
note that a cycle containing many nodes may well contain just a few dependency
types. Thus one should also rank the cycles depending on the number of depen-
dency types they contain as well as consider the feedback duration (minimum
and average duration) based on the respective response functions cycles thus
identified. We make the assumption that the number of cycles is bound by the
number of nodes in the network. This assumption is realistic in most applica-
tion scenarios, as too many cycles, especially in an infrastructure transporting
physical commodities, are inefficient. The length of the cycle is bounded by the
number of nodes in the network so finding the cycle length given the cycles is
roughly of complexity O(|V|2).

Average redundant in-degree of nodes in the cycle High average in-degree of
the nodes in a cycle can, depending on constraints, indicate a high level of
redundancy. One must obviously distinguish between the different dependency
types in this analysis, referring to the typed dependency graph (e.g. considering
the case that a node may go down if cooling dependencies are no longer satisfied
even with multiple redundant electrical power feeds). The in degree of a node is
bounded by the number of edges in the network, and is calculated once by going
through the adjacency list or matrix (depending on the selected representation
in of the implementation) of the graph. Given that the number of nodes in a
cycle is O(|V|) the complexity of this statistic is O(|V||E|).

7

Strength of interconnecting edge The strength of the interconnecting edge rep-
resents similar information to the average redundant in-degree of the nodes in
the cycle of a given type, but focuses in particular on the nodes of the cycle
where the input is of one dependency type and the output is of an other depen-
dency type. This can e.g. be owing to such a shift often indicating a transition
of infrastructure owner. The identification of such edges can be done by going
through the adjacency list or matrix and check the dependency types required
for the response function of the edge with the dependency types produced by
the head node. In the presented model this can be done by a table lookup, and
the complexity is O(|V||E|). The in degree is found in the classical way.

Importance of interconnecting edge The relative importance of an interconnect-
ing edge is determined by second-order dependencies on the edge. It is therefore
required to perform a search of dependencies at a depth of one from the edge
under consideration. The interconnecting edges are identified as for the strength
of the interconnecting edges. For this metric the interest lies in the neighbor-
hood of the head node of the interconnecting edge. A first indication is found
by counting the number of response functions related to the head node that
demands the dependency type provided by the interconnecting edge, again an
approach based on table lookups and counting is suggested. Moreover, one can
explore the size of the spanning tree of the interconnecting node, in order get an
indication of the importance of the node in the dependency network.

Overlapping cycles Long cycles in multigraphs are likely to link the nodes of
the network closer together. Further there is no reason why overlapping cycles
may exist. This is likely to emphasize this effect and cause more chaotic chain
reactions in case of failures. For a node or facility in a network it is not neces-
sarily bad to receive parts of the resources from cycles, but when these cyclic
infrastructures are interwoven and interdependent one should consider estab-
lishing alternative supplies. Thus algorithms to detect such configurations are
important. Overlapping cycles may have one or several common points, or paths
shared between cycles. Once the list of cycles is established, common points can
be found by comparing the entries.

4.2 Flow-Based Modeling

In scenarios where more network information and time for model initiation is
available, network flow models can provide insight beyond the information given
by the statistical approach on the interconnected networks in question. Given
that several dependency types flow through the networks, multicommodity flows
or multiflows is a natural theoretical framework to map the presented model
onto for further investigations (see e.g. [5]). Multiflows are traditionally used
to model communication or transportation networks where several messages or
goods must be transmitted, all at the same time over the same network. In
general polyhedral and polynomial-time methods from classical (1-commodity)
flows and paths, such as max-flow min-cut, do not extend to multiflows and

8

paths [5]. But, given particular properties of the networks in question, efficient
solutions can be found in some cases. In this section we show how our model
can be adapted to the multiflow framework, and explore what opportunities this
gives for further studies.

Definition of the Adapted Multiflow Problem Given two directed graphs, a supply
digraph D = (V,A) and a demand digraph H = (T,R), where V is a finite set
(vertices), T ⊆ V , and A and R are families of ordered pairs respectively from
V and T (edges), Schrijver [5] defines a multiflow as a function f on R where fr

is an s−t flow in D for each r = (s, t) ∈ R. In the multiflow context, each pair
in R is called a net, and each vertex covered by R is called a terminal.

The model presented in section 2 does not explicitly classify sources and
sinks, but these can be deduced from the properties of the edges at any given
time. Sources are nodes where Dj(t) = 0 and rj(t) > 0, while sinks are nodes
where Dj(t) > 0 and rj(t) = 0. Further, if each of the m dependency types
in our model is to represent one commodity flow in the multiflow network, this
results in m super-sources sj , each linked to every source of dependency type dj

and m super-sinks tj connected to every sink of dependency type dj . Given this
modification, we now have that |R| = m, where m is the number of dependency
types, and the flow network is called an m-commodity flow, and our dependency
types can also be named commodities. The value of f is the function φ : R → R+

where φr is the value of fr. For each edge we have previously defined a max flow,
or maximum capacity function, cMax : A → N, where CMax(ej

i (va, vb)) is the
value of c. We say that a multiflow f is subject to c if∑

r∈R

fr(e
j
i (va, vb)) ≤ c(ej

i (va, vb))

for each edge ej
i (va, vb). The multiflow problem over our model is then given a

supply digraph D = (V,A), a demand digraph H = (T,R), a capacity function
cMax, and a demand function d = R → R+ at time t to find a multiflow subject
to d, what is called a feasible multiflow. Related to this problem is the maximum-
value multiflow problem, where the aim is to maximize d.

The two models are now equivalent up to the point of time dependency.
Our model allows most of the features to vary over time, while as the multiflow
framework assumes that edge capacity and node behavior is static. An important
question in the following section is therefore how, or rather if, the behavior of
a dynamic model (as well as the system being modeled) converges towards the
idealized properties of a static model.

Applicable Properties and Algorithms on Multiflows and Related Problems The
motivation for connecting our model to the multiflow model and its related
problems and algorithms is to identify algorithms of polynomial time complexity
that can be applied for network analysis. These cases are not numerous, but the
few that exists are interesting for the scenarios the presented model is faced
with.

9

If each flow fr is required to be integral as stipulated in section 2 or rational,
the multiflow problem described in the previous section is called respectively
the integer and fractional multiflow problem. The fractional multiflow problem
can easily be described as one of solving a system of linear inequalities in the
variables fi(e

j
i (va, vb) for i = 1, . . . k for all edges in E , and a static solution to the

multiflow problem can be found in polynomial time with any polynomial-time
linear programming algorithm [5].

The disjoint paths problems is another class of problems that has an imme-
diately intuitive application to the model discussed in this paper. Assuming all
capacities and demands set to a value of 1, the integer multiflow problem is equal
to the (k) arc- or edge-disjoint problem, i.e. given a directed graph D = (v,A)
and pairs (s1, t1), . . . , (sk, tk) of vertices of G, to find arc- (or edge-) disjoint
paths P1, . . . , Pk, where Pi is a si − ti path (i = 1, . . . , k). In the terminology of
critical infrastructure models, this is to find redundant paths or connections for
the different flows. Similarly one can define the vertex disjoint problem [5]. The
complexity of the vertex k disjoint path problem over planar directed graphs is
polynomial, while it is unknown for the arc-disjoint path problem. This provides
an efficient mechanism for checking whether a flow believed to be redundant is
indeed redundant.

5 Analytical Approach

Based on the model introduced in section 2 and the statistics and algorithms
presented in section 3, this section outlines algorithms to analyze the influence
of mixed types cycles on a pre-defined subgraph from the perspective of an
infrastructure or sub-network owner. Let N = (V ′, E ′) be a subgraph of the
multigraph G = (V, E). We assume that |V| ≥ 1, and that |E| ≥ 0, meaning
that N can be a single node, a number of independent nodes, or a connected
subgraph. For an infrastructure owner there are two scenarios including cyclical
interdependencies that are of interest; cycles within the controlled network and
cycles which are partially under control and partially traversing infrastructure
controlled by other operators. Our focus is on the latter, and in the following we
outline an approach for operators to detect critical configurations given that all
operators of the network are willing to share network information.

5.1 Detection of intersecting cycles

For every node in G the approach for detection of cycles described in section 3.2 is
used to detect mixed cycles. The cycles can be classified into three groups: Mixed
cycles included in N , partially included in N , and those not included in N . This
can be done using a string string matching algorithm such as the Knuth-Morris-
Pratt algorithm of complexity O(m + n), where m and n is the length of the
strings to be matched [6]. Assuming that the longest cycle has |V|+ |E| elements
and that |C| is the number of cycles the detection has complexity O(|C|2(|V|+
|E|)). We see that the complexity of the algorithm is highly dependent on the

10

number of cycles in the graph, and as this is an infrastructure dependent property
giving this estimate in terms of e.g. E and V is unlikely to result in appropriate
bounds.

5.2 Determination of cycle criticality

The characteristic of dependency cycle is neutral. In previous sections we have
listed some properties of the overall stability of a cycle, e.g. the average redun-
dant in-degree of the nodes of a cycle. As mentioned, a mixed type cycle may well
cross subgraphs of the network of multiple ownership. Each of these owners will
typically be more interested in how dependent the subnetwork is on the func-
tionality of the cycle, and in some cases also how dependent the cycle is on the
sub-network. Here we sketch an algorithm for a automatic, or semi-automatic,
classification of the influence of a cycle which is partially included in the subnet-
work N on N itself. We define an entry point, vin, of a cycle to be the first vertex
located inside our network N , that is vxi ∈ N such that vxi−1 /∈ N , an its corre-
sponding type be the dependency type binding the two nodes together. Further
we define the corresponding exit point, vout, to be the first vertex of the cyclic
path located outside N , that is vxi−1 ∈ N and vxi

/∈ N with a corresponding type
defined as for the entry point. Further we let C be a table which for each cycle
contains four-tuples of the form (vin, din, vout, dout), enabling cycles to traverse
N more than once. This definition of vin and vout is compatible with vertex and
and edge coalescion, not based on connectivity properties as described in [8] but
on ownership, which can be used for high-level network analysis. Algorithm 1
suggests an approach to derive some descriptive statistics of cycles that nodes
of N are included in, and highlight important interdependencies. The algorithm
applies the functions Sdj

(v) (strength of incoming edge of dependency type dj),
I(v) (importance of the functionality of vertex v), and A(C) (average redundant
in-degree of nodes in the cycle) and the complexity for each analysed cycle is
O((|V||E|)4). Based on this the infrastructure owner can use e.g. a breadth first
search on the coalesced graph to identify alternative supplies of dj to vin.

6 Related Work

The need for models of critical infrastructures usable for both planning and
operational purposes has led to a number of approaches; some of the more general

Algorithm 1 Detection of vulnerable nodes in cyclic interdependencies
G, N ∈ G, C, A
for all (vin, din, vout, dout) ∈ C do

if I(vin) high, Sdin(vin) low, A(C) low then
return vin is in an vulnerable cycle. Consider redundant sources of dependency
type din.

end if
end for

11

approaches are reviewed by the present authors in [2] while an additional review
of recent research in the CI(I)P area in Europe can be found in [9].

Graphs models represent a natural approach for dependency analysis and
attack mechanisms and have been used at a number of different scales from
individual attack models based on restricted graph classes [10] and abstract
static hypergraphs [11] to work on graph properties [12–14]. The work reported
in this paper attempts to bridge a gap in both the research taxonomy as proposed
by Bologna et al. and also in the graph modeling in particular by investigating
intermediate or regional-scale networks which, through careful conditioning of
the model excerpt, still allows quantitative modeling and simulation; details of
which underlying models can be found in [1–3].

7 Conclusions

Based on a multigraph model incorporating extensions to characterize the prop-
erties of selected types of infrastructures such as the electric power grid and oil
and gas pipielines representing storable and non-storable as well as fungible and
non-fungible resources, we have reported on mechanisms for characterizing cycli-
cal interdependencies of multiple infrastructure types and the effects that such
dependencies can have on the overall robustness of an infrastructure network.
Our previous research has identified a number of configurations and scenarios in
which feedback cycles can arise that are not always trivial or obvious to predict
and may incorporate significant delays before taking effect [1–3]. By using both
graph statistics and multiflow algorithms to characterize said cycles, it is possi-
ble to gain a more comprehensive understanding of the feedback cycles inherent
in such configurations. However, it must be noted that the vast majority of re-
search questions arising from said configurations are NP-hard and can therefore
often only be investigated using heuristic techniques or by limiting the subject
of investigation to graphs of limited diameter and complexity.

Ongoing and future research will focus further on characterizing the risks and
threats to the infrastructure network at both local and regional scales emanat-
ing from targeted attacks including the effects and attack efficacy which can be
obtained by attackers from multiple coordinated events. While previous research
has indicated that such attacks can be quite successful, particularly in networks
with scale-free properties [2,3,15,16], there has been only limited research on the
nexus between geospatial proximity and fine-grained time-based effects on inter-
connections and interdependencies of multiple infrastructure types [8]; this area
is the subject of ongoing investigation by the present authors. In addition to the
analytical and algorithmic approaches, we are also continuing to use simulations
based on the model reported in this and earlier research both to validate the
model itself and to show the usefulness of the results of applying the methodol-
ogy. Given the large parameter space required even in well-characterized infras-
tructure networks, this is likely to permit the identification and exploration of
further properties of the interdependence model.

12

References

1. Svendsen, N.K., Wolthusen, S.D.: Multigraph Dependency Models for Hetero-
geneous Infrastructures. In: First Annual IFIP Working Group 11.10 Interna-
tional Conference on Critical Infrastructure Protection, Hanover, NH, USA, IFIP,
Springer-Verlag (March 2007) 117–130

2. Svendsen, N.K., Wolthusen, S.D.: Connectivity models of interdependency in
mixed-type critical infrastructure networks. Information Security Technical Re-
port 12(1) (March 2007) 44–55

3. Svendsen, N.K., Wolthusen, S.D.: Analysis and Statistical Properties of Critical
Infrastructure Interdependency Multiflow Models. In: Proceedings from the Sev-
enth Annual IEEE SMC Information Assurance Workshop, United States Military
Academy, West Point, NY, USA, IEEE Press (June 2007) 247–254

4. Karmarkar, N.: A New Polynomial Time Algorithm for Linear Programming.
Combinatorica 4(4) (1984) 373–395

5. Schrijver, A.: Combinatorial Optimization. Springer-Verlag, Berlin, Germany
(2003) Three volumes.

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorihms. First edn.
The MIT Electrical Engineering and Computer Science Series. The MIT Press
(1990)

7. Bandes, U., Erlebach, T., eds.: Network Analysis, Methodological Foundations.
First edn. Volume 3418 of LNCS. Springer-Verlag, Berlin Heidelberg (2005)

8. Wolthusen, S.: Modeling Critical Infrastructure Requirements. In: Proceedings
from the Fifth Annual IEEE SMC Information Assurance Workshop, United States
Military Academy, West Point, NY, USA, IEEE Press (June 2004) 258–265

9. Bologna, S., Di Costanzo, G., Luiijf, E., Setola, R.: An Overview of R&D Activities
in Europe on Critical Information Infrastructure Protection (CIIP). In Lopez, J.,
ed.: Proceedings of the First International Workshop on Critical Information In-
frastructures Security (CRITIS 2006). Volume 4347 of Lecture Notes in Computer
Science., Heidelberg, Germany, Springer-Verlag (August 2006) 91–102

10. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In Won, D., Kim, S.,
eds.: Proceedings of Information Security and Cryptology (ICISC 2005). Volume
3935 of Lecture Notes in Computer Science., Heidelberg, Germany, Springer-Verlag
(December 2005) 186–198

11. Baiardi, F., Suin, S., Telmon, C., Pioli, M.: Assessing the Risk of an Information
Infrastructure Through Security Dependencies. In Lopez, J., ed.: Proceedings of
the First International Workshop on Critical Information Infrastructures Security
(CRITIS 2006). Volume 4347 of Lecture Notes in Computer Science., Heidelberg,
Germany, Springer-Verlag (August 2006) 42–54

12. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network Robustness
and Fragility: Percolation on Random Graphs. Physical Review Letters 85(25)
(2000) 5468–5471

13. Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the Internet to
Random Breakdowns. Physical Review Letters 85(21) (2000) 4626–4628

14. Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Breakdown of the Internet
under Intentional Attack. Physical Review Letters 86(16) (2001) 3682–3685

15. Dorogovtsev, S.N., Mendes, J.F.F.: Effect of the accelerating growth of communi-
cations networks on their structure. Physical Review E 63 (2001) 025101

16. Casselman, W.: Networks. Notices of the American Mathematical Society 51(4)
(2004) 392–393

