
TRANSPARENT ACCESS TO

ENCRYPTED DATA USING

OPERATING SYSTEM NETWORK

STACK EXTENSIONS

Ero Rademer (Fraunhofer-IGD, Darmstadt, Germany)
and Stephen D. Wolthusen (Fraunhofer-IGD, Darmstadt, Germany)

Abstract The CIPRESSsystem provides security enhancements for general purpose oper-
ating systems by adding kernel level functionality for cryptographic and stegano-
graphic operations and keeping both users and application programs unmolested
as far as possible. This paper describes the transparent network filtering and en-
cryption mechanisms used in the Microsoft Windows NT implementation that
allow integrated access and use control over confidential or otherwise restricted
data at client systems.

1. INTRODUCTION

Relying on users to handle data security by themselves is a risky proposi-
tion. Even if users are completely trustworthy, the probability that necessary
operations are omitted (e.g. asserting access control lists on local systems, us-
ing encryption mechanisms) due to inconvenience or lack of time is always
present; this problem exists even with people that by most standards should
know better (Snider and Seikaly, 2000). In addition, virtually all analyses of
attacker profiles in recent years indicate that a significant part of the IT security
breaches is caused by current or former employees.

Any organization wishing to secure confidential or classified information
– or to ensure that intellectual property rights are honored – must therefore
use stronger mechanisms enforcing security constraints even against the will
of the users if necessary. At the same time such security measures should be
unobtrusive.

Another problem that is typically ignored is the handling of use control. If
one stipulates that users cannot be fully trusted with the material obtained, then
transmitting files for local use or even for viewing on a browser-type applica-
tion creates an opportunity to use the data in an unauthorized way. Even if

the initial access was controlled, most systems do not deal with use control
at all; once a user has access to the data, further re-use (e.g. by copying and
pasting to other documents) is not addressed. Traditionally, this is dealt with
only in applications and therefore subject to a number of attacks and functional
limitations.

However, even if use control mechanisms are implemented without the pos-
sibility for circumvention, some problems remain unsolved, chiefly that at
some point the document is transformed into an analog representation (e.g. on
screen, as a printout, as an analog audio output,. . .). This representation can
then be used to circumvent the most elaborate encryption and access control
mechanisms by simply removing a printout from the premises. While preven-
tion is not feasible (even if printing were disallowed, the issue of screen shots
remains), there is a possible deterrence mechanism, namely the use of digi-
tal watermarking to identify both the owner of a document and the user who
accessed the document. In conjunction with the abovementioned automated
cryptographic mechanism for access and use control, these watermarks can
also be embedded at the kernel level without the possibility of user interven-
tion.

The CIPRESS1 system is an attempt at addressing this conundrum by adding
mandatory access control, encryption, and auditing mechanisms to existing
operating environments which provide adequate support for both applications
and security extensions. This paper describes the part of the CIPRESSsystem
that provides transparent network layer access control, auditing and encryp-
tion on the Microsoft Windows NT platform. The system was implemented
under Microsoft Windows NT 4.0 starting in the spring of 1998, a first work-
ing prototype including the foundation of the network filtering and encryption
mechanisms described here was released in 1998; the result of ongoing re-
search during 1999 and early 2000 is described here.

1.1. BASIC CONCEPTS OF CIPRESS

CIPRESSadds security mechanisms at the kernel level and thus is able to
enforce a security policy for all applications and users while being largely
invisible to users and applications; the kernel/user mode separation is also
used for protecting itself; similar mechanism have been used by others (Jones,
1993; Reynolds and Heller, 1991) to add non-standard functionality to existing
operating systems.

The enforcement of the security policy is ensured by keeping protected data
mandatorily encrypted2 at all times and decrypting it only on the fly and af-
ter verification of access rights without the possibility of intervention by the
user. Key material is not stored locally on client systems but rather forwarded
from a central trusted site (the Key Center) to a trusted environment3 on the

client system wishing to perform the encryption (store) or decryption (load)
operation4 . Since verifying each file system access via a centralized database
would be highly impractical, distinctions are made between general data (en-
crypted using a common key specific to a machine or user called the Mas-
terKey) and documents intended for exchanging between individual systems
or users. Only for the latter so-called registered documents5 the central Key
Center access control and key granting mechanism is used. After a user has
logged into the system and authorized himself to the Key Center, all opera-
tions regarding key handling are performed transparently and without further
user interaction. Documents are identified by a cryptographic hash6 value;
the Key Center allocates a symmetrical key to eachhdocument;useri tuple
hDi; Uji. Since documents are transmitted only ever in encrypted form, each
document access requires a permission verification and key request – this re-
sults in an effective means for achieving use control, not just access control
since the enforcement mechanism stays intact beyond the initial access; fur-
thermore, a request by a userUj0 to store a registered documentDi obtained
from userUj will automatically result in the document being encrypted with
the specific keyhDi; Uj0i and an audit log of the access being generated. Due
to the chaining of the encryption keys (this mechanism is called ReEncryp-
tion), a tree of a document’s propagagation can be generated at the Key Center.
In any case the en- and decryption on the fly is realized both at the file system
and at the network level in an operating system extension, so that the appear-
ance of the system to both users and applications is that no change compared
to an insecure system is detectable; only someone e.g. attempting to access a
file system without the CIPRESSsystem running will see only encrypted data.

This mechanism goes beyond merely using labels for enforcing access con-
trol in at least one important area; in a networked environment the possibility
exists that an individual system can get compromised since there is no such
thing as perfect security. In case of a local security breach (e.g. by compromis-
ing the host operating system) an attacker will find only encrypted data on the
attacked system. Compromised systems can be blacklisted so that neither op-
erational clients nor, more importantly, the Key Center will communicate with
insecure systems. Furthermore, changes in access control lists on registered
documents take effect immediately regardless of the storage location, while the
system contains central repositories also used for registration purposes called
Content Server systems, it is completely irrelevant for the operation of the en-
cryption mechanism whether the document is retrieved on-line from a Content
Server or e.g. read from an archive on a DVD-ROM or simply the local hard
disk.

CIPRESSis not a multilevel security system in the traditional sense; it merely
enforces the access and use control mechanisms on registered documents. The
remaining component of the security concept that facilitates the move beyond

rigid compartmented levels is that of tainting. Files created or merely touched
by a user with write access are automatically encrypted as MasterKey docu-
ments even if they are plaintext files located on a remote file system. Only files
which match a cryptographic hash of a registered document may be exchanged,
and for these the Key Center enforces the security by granting or denying keys.
A user may therefore create new documents or copy and paste from a registered
document to which she has access; it can only be forwarded to other users by
registering the newly created file with the Key Center. As noted in section 4,
this behavior dovetails with the requirements of a typical Microsoft Windows
NT working environment where a separation into compartments is rather diffi-
cult. However, if an operating environment and applications support such be-
havior, enforcing compartmentalization of tainted files becomes feasible using
the mechanisms present in the CIPRESSsystem, and one can easily implement
a multilevel security system with the appropriate security policy in place.

As noted before, no encryption system can protect against the possibility
that a document is legitimately obtained and then converted to an analog rep-
resentation only to be removed. As in the case of encrypting files and network
traffic, it is irrelevant whether a legitimate copy falls into the hands of an ad-
versary due to an oversight by a legitimate user or if the illegitimate removal
of the analog copy is done deliberately. CIPRESSattempts to address this issue
by embedding a digital watermarking (Busch et al., 1999) mechanism in the
operating system alongside the encryption mechanisms, that is, a mechanism
for embedding secret (or public) information in the carrier signal of a multime-
dia document in such a way that it is difficult to remove or tamper with even
though it is not perceptible. This mechanism ensures that any registered doc-
ument for which a watermarking mechanism exists, a watermark identifying
the user that retrieved the document (i.e. the user for which the Key Center has
granted the decryption key and logged the document access) is embedded into
the document. This occurs regardless of the type of data access (i.e. from a file
system or over a network connection) and takes place before the application
and hence the user has access to the document. Any printout or screen shot
therefore contains the identity of the user; in addition to that, the digital wa-
termark developed by our group is capable of supporting hierarchical digital
watermarks, the document therefore also contains two additional watermarks
which are already embedded at the time of document registration. One of these
two server watermarks is a secret watermark known only to the administrator
of the Content Server at which the document was registered (typically this role
belongs to an organizational security administrator) and the operator of the Key
Center. The other watermark is a public watermark that can be read by anyone
with the appropriate tool and allows the identification of the original (digital)
document from the analog representation by extracting an identity code for the
source Content Server and a sufficiently large (48 bits) fragment of the SHA-1

cryptographic hash. This allows one to identify the digital source document
even if only a fragment7 is available. This can be of value in and of itself
withhout considering the security aspects.

The overall system architecture is beyond the scope of this discussion; for a
by now somewhat dated general overview see (Busch et al., 2000).

2. THE MICROSOFT WINDOWS NT

NETWORK STACK ARCHITECTURE

Due to the requirements for a basic security model described in section 1.1,
the following discussion is limited to NT-based operating system family; this
family includes Microsoft Windows NT 4.0 and Microsoft Windows 2000;
earlier versions of Microsoft Windows NT did not have the WinSock2:x API
introduced with Microsoft Windows NT 4.0 although it is possible to retrofit
it on Microsoft Windows 95. While there have been a number of changes in
Microsoft Windows 2000, the discussion here applies to both releases.

Microsoft Windows NT provides several networking APIs, namely

WinSock
Named Pipes
Mailslots
Remote Procedure Call
NetBIOS
Telephony

Other services such as DCOM may be layered on top of these interfaces;
while some of these interfaces have their own security and encryption mech-
anisms (such as RPC) others rely on the connection being assumed as secure
and simply enforce access controls (e.g. named pipes and mail slots which are
implemented as file systems and can use the access control mechanisms for file
systems, see (Solomon, 1998; Solomon and Russinovich, 2000).

To obtain a reasonably secure network configuration, transport bindings
must be restricted. While it would be possible to modify transport mechanisms
such as IPX/SPX, AppleTalk, VINES IP, and NetBEUI for supporting access
control and encryption, it is hardly worth the effort since in most cases IP can
be substituted; besides, such a mechanism would lead to a proprietary protocol
stack. Apart from such considerations it should also be noted that each trans-
port mechanism supported brings with it the potential for fatal security flaws
in its implementation, so in this as in many other cases, less is more.

Furthermore, some interfaces such as Telephony are notoriously insecure
since they bypass the usual protection mechanisms and must be disabled in a
secure environment.

Application program

API DLL (WS2_32.DLL) Extension DLLs

U
se

r
M

od
e

K
er

ne
l M

od
e

Transport Service Provider DLL (MSAFD.DLL)

SPI Layer

Service
Providers

System Support Library DLL (NTDLL.DLL)

Ancilliary Function Driver
File System Driver

I/O Manager

Protocol Driver
Protocol Driver

Transport Driver Interface

NDIS Library

Physical Device

Hardware Abstraction Layer

Physical Device

NDIS MiniPort
NDIS MiniPort

Transport Helper DLLs
Transport Helper DLLs

Transport Helper DLLs
Namespace Helper DLLs

Namespace Helper DLLs
Namespace Helper DLLs

Figure 1 Interacting Components in WinSock Calls

Assuming that one concentrates on using IP as the sole transport mecha-
nism, one can then implement a security mechanism by interposing such a
mechanism at the service provider level (see figure 1).

The network architecture of Microsoft Windows NT consists of a number
of layers. At the lowest level is the physical device, access to the device is
regulated by the hardware abstraction layer (HAL). Device drivers are real-
ized as NDIS (Network Driver Interface Specification) modules consisting of
the generic NDIS library and the device-specific NDIS miniport drivers; the
library fully encapsulates the miniport drivers. Accessing the NDIS library is
the TDI (Transport Driver Interface) mechanism. This itself consists of trans-
ports (or protocol drivers), supporting the various transport mechanisms such
as NetBEUI and TCP/IP, and TDI clients which provide services for sockets
and NetBIOS calls. None of these modules can be called directly from appli-

cations since they are protected kernel mode interfaces. Upper-level APIs such
as NetBIOS and Windows Sockets are implemented at the user level.

The Windows Sockets API (or WinSock) is modeled after the original BSD
sockets (McKusick et al., 1996) and has undergone significant revisions under
various platforms before arriving in its current form (Andersen, 1997a; Ander-
sen, 1997b). It is available for both the NT-based and DOS-based operating
systems from Microsoft Corporation.

It consists itself of several modules. From an application’s perspective the
sockets API consists of the exposed API DLL (dynamic-link library); this DLL
communicates with the SPI (Service Provider Interface) layer. This layer is
controlled by the transport service provider DLL which in turn calls on a num-
ber of transport helper DLLs and namespace helper DLLs to perfom its mis-
sion. On the other hand, the transport service provider DLL forwards the thus
generated calls to the System Support Library DLL that represents the inter-
face to the abovementioned kernel components. Since the Microsoft Windows
NT design is predicated on a file system model and represents sockets as file
handles, a translation mechanism is required. This service is performed by an
Ancilliary Function Driver (AFD).

Of particular interest in this is the ability to stack several of the transport
helper DLLs so as to provide additional services at each level (there is no
layering mechanism for namespace helper DLLs). WinSock here distinguishes
between “base protocols” and “layered protocols”. The former are protocols
capable of performing actual communication with a remote endpoint, the latter
must rely on base protocols for actual communication and only provide added
value. At least in theory it is possible to implement several stacked layers of
such layered protocols, permitting the implementation of a variety of services.

3. IMPLEMENTATION

At the time of the initial implementation in 1998 the documentation of the
layered service provider (LSP) mechanism was limited to (Andersen, 1997b),
since then (Butterklee et al., 1999) has appeared, and both Microsoft Windows
98 and Microsoft Windows 2000 are now using a LSP to implement quality of
service (QoS). It therefore appears that others have recognized the validity of
the approach taken for implementing the security mechanisms in CIPRESSfor
Microsoft Windows NT.

Logically the provider can be separated into two parts. One is responsible
for providing a secure channel while the other is tasked with handling the reg-
istered documents. These two functions are largely independent and can be
layered themselves with the secure channel layer being at the bottom of the
stack.

However, our experience has shown that inserting more than one provider
into the stack is rather problematic. The majority of these problems occur
in conjunction with Overlapped I/O, that is also involved in other issues as
described below.

A Layered Service Provider must announce itself to the WinSock by reg-
istering a new Provider Catalog Entry. This catalog entry can be considered
the “new layer”. For the WinSock subsystem to actually know when the new
layer has to be called and where in the service provider hierarchy it has to be
placed additional Service Provider Chain Catalog Entries have to be made. In
our case this is done for the TCP and the UDP protocol; although technically
only TCP monitoring is required, it is necessary to do so for UDP as well, oth-
erwise an error condition in the operating system is triggered. To ensure that
the WinSock Service Provider cannot be registered twice, each of the Provider
Catalog Entries is assigned a unique catalog number (GUID). This mechanism
as well as the deregistration is part of the provider and can only be called by a
thread with administrative privileges.

Although the WinSock Service Provider will work for most applications
and the Microsoft Windows NT system services itself when performed on an
Microsoft Windows NT 4.0 system with Service Pack 3 installed, the official
documentation states that a Layered Service Provider must make use of a sys-
tem call which was not provided up to Service Pack 4. This affected all socket
operations which involved Overlapped I/O such as Microsoft ODBC and might
be one reason why this interface was used so sparingly until very recently. For
the service provider to work properly, the WinSock elements from Service
Pack 4 or above had to be present on a Microsoft Windows NT 4.0 system.
Later releases and Microsoft Windows 2000 do not suffer from this omission.

As described in (Andersen, 1997b), the service provider DLL must be reg-
istered with WinSock. Loading the DLL is performed by WinSock itself, not
by user applications, all uses of WinSock after the installation will be forced
to operate through this layer.

3.1. THE ENCRYPTION LAYER

For providing the secure channel we selected the SSL (TLS) (Frier et al.,
1996; Dierks and Allen, 1999) protocol. While there are certain drawbacks to
this such as the limitation to TCP-based connections and the need for elaborate
session caching to obtain acceptable performance, there are some advantages
to this mechanism. One of these is that the protocol is well understood with the
core elements remaining stable for a long time. These core elements include
some cipher suites and the handling of mutual authentication based on public-
key certificates.

The protocol should not be confused with the often haphazard implemen-
tation found in a number of products, especially WWW browsers and servers
that tend to be rather lenient in both the cipher suite negotiation and, more im-
portantly, in honoring the authentication mechanism process. If implemented
correctly – i.e. with security instead of convenience as the objective – SSL
can ensure strong ciphers and authentication. For the purposes of establish-
ing secure channels (e.g. from a client to the Key Center), CIPRESStherefore
requires that strong mutual authentication has succeeded based on certificates
known to the provider (typically this would only be an organization’s own CA,
accepting arbitrary third-party certificates is not desirable8), and that an accept-
able cipher suite has been negotiated. Otherwise establishment of connections
is denied.

An important benefit of a SSL-based implementation is that it does not in-
terfere significantly with network management mechanisms since it is oper-
ating at the application layer in the OSI reference model. This should allow
easier integration of CIPRESSsystems into existing network structures with-
out necessitating new mechanisms and tools, as will be required once IPSEC
mechanisms are deployed more widely.

Another possibility opened by the use of the SSL protocol is that one can use
COTS accelerator subsystems (provided they can handle the required cipher
suites9) instead of the software-based mechanism on server systems. Since the
assumption here is that the server systems are in a trusted environment in any
case, this generally should not represent a significant degradation of security.

3.2. NETWORK ACCESS CONTROL

During the installation process the WinSock Service Provider is provided
with an access list describing for which hosts a secure channel must be es-
tablished. This mechanism can also be used to communicate rules for packet
filtering based on IP addresses and hosts10 in cases where a restriction to com-
municating only with CIPRESShosts is too restrictive11. This mechanism does
not replace an external firewall (which is able to counter a number of attacks
that cannot be dealt with in the location covered here), but it ensures that net-
work connections created by applications are limited to those systems covered
by the local security policy without the possbility for user manipulation.

3.3. HANDLING REGISTERED

DOCUMENTS

The second, theoretically independent function of the WinSock Service Pro-
vider is to detect the transmission of registered documents and to provide en-
cryption and decryption on the fly so applications and users will not notice.
For this purpose, registered documents are prefixed with plaintext header in-

formation. The WinSock Service Provider forwards packets recieved from a
socket unchanged to the calling application unless a “magic string” is detected
in the data stream. In case of a detection, the WinSock Service Provider must
read the remaining parts of an as yet hypothetical registered document without
affecting the handling of false positives. It should be noted that false negatives
have no security impact; in such a case a legitimate client would merely not
receive the plaintext.

If the detected magic string is indeed the start of a registered document, the
WinSock Service Provider must read the the rest of the header and the docu-
ment body itself for further processing; otherwise it is the service provider’s
responsibility to abort any read-ahead (in case that the received data indicates
that there is no registered document in the data stream) as soon as possible and
to give back the data gathered so far.

The criteria to detect a “this is not a proper header” condition are (in order
of reception):

1 The magic string was not completed correctly
2 The data format for hypothetical fields do not match (e.g. binary vs.

ASCII data required by the format)
3 The data length field has an invalid value (zero).
4 The CRC value (computed over the entire header) does not match.

In all cases, a (completed or not completed) header received in more than a
particular number of chunks is rejected; also, there is a maximum timeframe
during which the provider waits for any missing parts, either header or doc-
ument data (both conditions would indicate an interactive session with some-
one typing the header data). Since a header may start anywhere within a data
stream, a sliding window mechanism must be applied to search for the start of
such a header.

Once detection was successful, the application does not receive any more
data, instead the WinSock Service Provider gathers the necessary data off the
network stream, allocates a protected memory mapping, and calls a system
service that is also part of the CIPRESSsystem (and also running with admin-
istrative privileges, separatd from any user process) for further processing.

This processing begins with verifying the encrypted document’s integrity
and requesting the ReEncryption key material from the Key Center; if this is
not granted, the encrypted data is forwarded to the application and the provider
continues searching for registered documents.

In case permission and key material was granted, the document is decryp-
ted12, and a user fingerprint digital watermark (i.e. an identification code for
the user under whose identity the document was retrieved) is inserted if a wa-
termarking mechanism is available and registered for a given data type inside
the service. Only then is the flow of control returned to the WinSock Service

Provider which can now use the decrypted and (if possible) marked data from
the memory mapping to feed into the application. To the application, this pro-
cess appears largely transparent; the transmission behavior is changed in that a
delay in transmission is followed by a burst of receiving activity. Overall trans-
mission time is increased only by the latency introduced by the decryption and
watermarking.

Since digital watermarking introduces noise into the carrier signal of the
marked data, even systems as the one used here reach a limit regarding the
number of markings that can be embedded in the same carrier signal. If such
a threshold is reached, the service will automatically retreive another copy of
the document from the Content Server that is home to the digital document and
start a new sequence of markings with this fresh copy.

Both this automatic re-fetching and the abovementioned retrieval of the key
material cause an interesting recursive condition in the internal state of the
WinSock Service Provider and must be handled with extreme care. A similar
situation occurs in case of a cache miss or implicit retrieval operation in the
service described in section 3.4

3.4. DIRECTORY SERVICES

While mutual authentication according to the TLS standard requires that
certificates are exchanged during each (re-)authentication, and issues such as
expired certificates can be handled during the authentication stage, there is still
a need for a directory service for revoked certificates.

This is handled by means of another system service, the Directory Service.
Due to performance reasons it is not desirable to perform an online direc-
tory lookup every time a certificate is verified. Therefore the Directory Ser-
vice contains a local cache which can store recently used certificate revocation
lists and perform verification services for the WinSock Service Provider using
a fast local interprocess communication mechanism (Local Procedure Calls).
At certain intervals, new CRLs can be retrieved using a directory mechanism
(LDAPv2 is used for this purpose; since only passive retrieval of signed data is
required, no elaborate authentication mechanism is necessary). As discussed
before, only a single CA should be used for performance reasons; this CA pub-
lic key must be stored locally in the client in a secure storage area and updated
if and when the CA public key is renewed.

3.5. PROBLEMS ENCOUNTERED

As noted before, the documentation of the interfaces used is not exactly
adequate, and at least earlier operating system versions contained incomplete
implementations of WinSock despite claims to the contrary. In addition to this,
a number of applications caused problems by program errors which are appar-

ently ignored or even “supported” by the operating system-supplied provider
such as attempting to read from a closed socket (file handle) and expecting to
read valid data. Since one of the application exhibiting this problem is con-
sidered a major player, the erroneous behavior had to be supported in our im-
plementation as well. Other problems surfaced in the previously mentioned
Overlapped I/O mechanism, especially when using the Microsoft-specific ex-
tensions to the WinSock API.

4. LIMITATIONS

As noted in section 1.1, the tainting concept in CIPRESSimplies that each
file touched by a user with write permissions must be encrypted with a Mas-
terKey. The way in which virtually all applications running under Microsoft
Windows NT are implemented results in the need for allocating a dedicated
workstation to each individual user; there is typically no clear separation of
data belonging to an individual user and write-protected data owned by a sep-
arate (system) account for the application13 . This is not a limitation of the
CIPRESSsystem but rather the result of faulty application design. However,
users require the functionality in any case and dedicating a system to a user
is much less expensive than creating properly designed applications with the
features of e.g. office productivity applications.

To ensure confinement of restricted data, the system must take a conser-
vative stance. While it can control incoming data, outgoing communication
always carries the risk of leakage or covert channels. The network security
mechanism must therefore ensure that all communication is encrypted and re-
stricted to other valid CIPRESS nodes. Merely encrypting the transmission
between nodes is insufficient since unless the target node is also a fully oper-
ational CIPRESSnode one cannot be ensured that the access and use control
mechanisms are also enforced on the receiving end.

The network stack security extension implementation on Microsoft Win-
dows NT also results in the facility being available only for the Win32 subsys-
tem, the OS/2 and POSIX subsystems (Solomon, 1998) must be disabled since
they do not access the WinSock mechanism. However, given the number of
applications and non-existent support for the latter subsystems this should not
be of grave concern.

5. OUTLOOK

We are currently implementing both Microsoft Windows 2000 and Sun So-
laris releases in addition to the Microsoft Windows NT 4.0 prototype. There
are a number of areas in which the security and usability of the CIPRESSsys-
tem in general and the network filtering mechanims in particular can be en-
hanced, and to which future research should be directed, e.g. the integration of

additional information on the subjects participating in the process and to fur-
ther restrict certain types of privileged communication to a set of applications
which have been evaluated for their security and conformance to the organiza-
tion’s policy. Another potential enhancement to the system is the support for
streaming data; currently only complete files are handled.

The authors would like to thank the Mitsubishi Corporation, Tokyo, Japan
for its generous support and close cooperation in supporting this research.

Notes

1. CIPRESS(Cryptographic Intellectual Property Rights Enforcement SyStem) is an internal project
code name of Mitsubishi Corporation and Fraunhofer-IGD

2. Currently Triple DES (National Institute of Standards and Technology (U. S.), 1994) with three keys
is used for all encryption operations

3. CIPRESSsupports hardware extensions for this purpose. However, a pure software version is also
available but is limited in security by the possibility of tampering with the software environment by skilled
aversaries.

4. The term “client” denotes the relationship to the CIPRESSservers – such systems can be servers
themselves in other contexts

5. The term document denotes arbitrary data in this context

6. Currently SHA-1 (National Institute for Standards and Technology (U. S.), 1995) is used for this
purpose

7. Experiments have shown that a 10% fragment of a printout is sufficient for the recovery of the full
watermark

8. This is mainly due to performance consideration. Even with aggressive session caching, following
chains of certificate places an undue delay on the establishment of connections

9. RSA/3DES/SHA-1

10. Microsoft Windows 2000 introduces an undocumented feature for packet filtering that might be an
alternative if the packet filtering API is published or at least acknowledged to exist on all versions of this
and future generations of the operating system family

11. This might e.g. be the case if certain infrastructure services such as DNS are permitted, but all other
communication is restricted to a secure network

12. The current system again uses 3DES CBC

13. The encryption of files shared between users due to the application design would result in the first
user touching such a file being encrypted with that user’s key, rendering it inaccessible to another user

References

Andersen, D. B. (1997a). Windows Sockets 2 Application Provider Interface.
Technical report, Intel Corp. Version 2.2.1.

Andersen, D. B. (1997b). Windows Sockets 2 Service Provider Interface. Tech-
nical report, Intel Corp. Version 2.2.1.

Busch, C., Funk, W., and Wolthusen, S. (1999). Digital watermarking: From
concepts to real-time video applications.IEEE Computer Graphics and Ap-
plications, 19(1):25–35.

Busch, C., Graf, F., Wolthusen, S., and Zeidler, A. (2000). A system for in-
tellectual property protection. InProceedings of the World Multiconference

on Systemics, Cybernetics, and Informatics (SCI 2000) /Int’l Conf. on In-
formation Systems Analysis and Synthesis (ISAS 2000), Orlando, FL, pages
225–230.

Butterklee, B., Hua, W., and Ohlund, J. (1999). Unraveling the Mysteries of
Writing a Winsock 2 Layered Service Provider.Microsoft System Journal.

Dierks, T. and Allen, C. (1999). RFC 2246: The TLS Protocol Version 1.0.
Frier, A., Karlton, P., and Kocher, P. (1996). The Secure Socket Layer (SSL)

3.0 Protocol. Technical report, Netscape Communications Corp.
Jones, M. B. (1993). Interposition agents: Transparently interposing user code

at the system interface. In Liskov, B., editor,Proceedings of the 14th Sympo-
sium on Operating Systems Principles, pages 80–93, New York, NY, USA.
ACM Press.

McKusick, M. K., Bostic, K., Karels, M. J., and Quarterman, J. S. (1996).
The Design and Implementation of the 4.4 BSD UNIX Operating System.
Addison-Wesley Publishing Company.

National Institute for Standards and Technology (U. S.) (1995). Secure Hash
Standard (SHA). Federal information processing standards publication 180-
1, NIST, Gaithersburg, MD, USA.

National Institute of Standards and Technology (U. S.) (1994). Data Encryp-
tion Standard (DES). Federal information processing standards publication
46-2, NIST, Gaithersburg, MD, USA. Supersedes FIPS PUB 46-1-1988 Jan-
uary 22.

Reynolds, F. and Heller, J. (1991). Kernel support for network protocol servers.
In USENIX, editor,Proceedings of the USENIX Mach Symposium: Novem-
ber 20–22, 1991, Monterey, California, USA, pages 149–162, Berkeley, CA,
USA. USENIX.

Snider, L. B. and Seikaly, D. S. (2000). Report on Investigation: Improper
Handling of Classified Information by John M. Deutch. Central Intelligence
Agency Inspector General Report 1998-0028-IG. Unclassified, FOUO.

Solomon, D. (1998).Inside Windows NT. Microsoft Press, Bellevue, WA, USA,
2nd edition.

Solomon, D. and Russinovich, M. (2000).Inside Windows 2000. Microsoft
Press, Bellevue, WA, USA, 3rd edition.

