
BT Technology Journal • Vol 25 No 1 • January 2007192

Automated extraction of behavioural profiles
from document usage

S D Wolthusen

Both human analysts and particularly automated tool suites are capable of deriving sensitive information and conclusions
from collections of data items that individually cannot be considered critical or sensitive. This activity of analysing and
correlating material that is not immediately related is, in fact, highly desirable in many application areas and cannot be
controlled precisely in advance. The decision whether a program or an analyst is performing searches and correlations beyond
the scope of his authorisation or current mission can frequently be determined only ex post based on a heuristic analysis of
documents accessed.

In this paper we describe a mechanism for the instrumentation of operating systems to obtain information on the documents
and resources accessed by arbitrary processes. Such a mechanism could be an important component of the infrastructure of an
operational risk management system, generating an audit trail for compliance and forensic investigation, and acting as a
sensor generating data for analysis. Addressing the latter application, the paper also outlines an approach for extracting
textual information and metadata from accessed documents, regardless of the application program and workflow mechanisms
used, without unduly impeding either workflows or operator performance.

This information can then be subjected to an heuristic analysis based on natural language processing to extract the semantic
context of each document or segment. Clustering this content and extracting the conceptual patterns that a user has accessed
can then allow abnormal behaviour to be identified. This can then be refined further to determine heuristically whether the
authorised remit of the user has been breached and whether an investigation is warranted. We argue that the risk of
misbehaviour can be reduced while at the same time increasing productivity. This is made possible by enhancing the degree of
freedom for individual users to act in the interest of their mission objectives and at the same time providing automated
mechanisms for analysing user behaviour.

1. Introduction
In environments where sensitive information must be
processed in a way that requires a certain amount of
flexibility (e.g. to ensure cross-fertilisation in intelligence
analysis and also in research and development), choosing
between highly restrictive security controls and providing
staff with the access privileges required to conduct their
work is a significant dilemma. Each course of action carries
significant risks, although in the former course of action,
these tend to be long term and harder to quantify since they
are opportunity costs, i.e. discoveries and developments not
made or productivity lost.

However, even when opting for a heavily controlled
environment it must be observed that security controls,
including mandatory controls, are limited in their granularity
by several factors. A primary aspect governing these
limitations is the complexity of the security policy to be
transformed into access control rules. The identification of
entities to which controls are to be applied is typically time-
consuming and must take the dynamic creation and deletion

of entities as well as changes in the security properties of
individual entities into account. Even within the constraints
imposed by the security models used, the full expressiveness
of these controls can therefore not be used effectively owing
to the overwhelming effort that would otherwise be
required. However, another problem that is primarily of
concern with unstructured data such as document
collections is that the same controls do not allow the
flexibility to designate selected portions of a given
document or collection as having differentiated security
properties. While it is possible to break up such collections
into multiple components and assign security properties to
each, this once again requires additional, often manual,
effort and thereby further exacerbates the previously noted
problem.

Finally, in many cases it is neither desirable nor possible
to designate precisely the bounds imposed on the access of
either an individual or, in some cases, an autonomous
process to a document or document collection. This
conclusion is motivated by two insights. Firstly, even though

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007 193

individual documents and information may not be sensitive
or classified as such, the process of collation itself and the
integration of multiple such elements of information may
result in a collection which a designating authority would
classify as sensitive. Secondly, it is only through access to
material for research and investigation that a number of
legitimate and desirable insights can be generated. By
constraining an individual’s access unduly a priori, important
insights may be lost.

In both of the cases described above, a decision on the
legitimacy of a given line of enquiry can only be fully
determined ex post by considering the collection process
itself, the outcome, and the context in which this outcome
was achieved. The context in turn consists of the identity of
the entity conducting the enquiry, information on the status
of the entity (e.g. association with an organisational unit or
an ongoing project), and a history of this entity’s past
behaviour. Beyond areas with demonstrable security
requirements (e.g. as required by law or other binding
regulations), however, the formulation of detailed security
policies and their technical implementation is limited in most
organisations. As noted above, the cost of devising, co-
ordinating, and implementing such policies, along with on-
going maintenance efforts, appears to be outside an
acceptable range and may well be counterproductive.

Based on earlier research [1], we argue that in such cases
it will often be acceptable and desirable to employ only
minimal (or otherwise feasible) security controls, but to
augment these controls with an audit mechanism which in
turn is coupled both with a behavioural anomaly detection
mechanism and with forensic capabilities. For legitimate
usage that is typically clustered around a selected number of
tasks with limited deviations, this can direct the attention of
security administrators to anomalous behaviour without
requiring excessive initial and ongoing policy definition and
implementation efforts. This provides a third option, in
addition to the two outlined at the beginning of this section
— the combination of coarse security controls, which can be
established at reasonable cost, and an ex post factum
mechanism which allows the partially automated and
assisted validation of trust placed in staff.

It represents a shift in emphasis in risk management from
prescriptive static policies to a more dynamic approach
based on recognising high-risk operational situations and
invoking the appropriate response.

The remainder of this paper is structured as follows —
section 2 provides a brief outline of the architecture used to
capture and analyse document access and usage patterns,
while sections 3 and 4 discuss the instrumentation and data
capture mechanisms. Section 5 contains a description of the
reassembly and format extraction mechanisms, while section
6 briefly discusses the analytical mechanisms used to
provide semantic clustering and anomaly detection

capabilities. Finally, section 7 provides an overview of on-
going and future research activities.

2. Architecture
The objective of the system architecture is to provide a fully
transparent mechanism for observing any access to file
systems and network data traffic that cannot be bypassed by
application programs and, at the same time, also does not
require modification of user or application program
behaviour. The data to be captured by this interception
mechanism consists of both metadata (e.g. file names and
locations, timestamps, and access modes in the case of files,
and source and destination addresses for network traffic)
and the actual data retrieved. This data has many uses in an
operational risk management (ORM) system, and the
proposed mechanism is potentially a valuable component of
ORM infrastructure.

The system is divided into four components:

• a suite of sensor components embedded in the host
operating system that can intercept and monitor all
data retrieval from all file systems (both local and via
network file systems) and selected network protocols
(primarily HTTP and S-HTTP over TLS),

• a sensor data extraction stack for analysing individual
files and constrained data streams for known file and
media types and, where possible, for extracting
pertinent information into a normalised format for
further processing by the anomaly detection and
semantic modelling components,

• an anomaly detection mechanism operating both on
the metadata level and the data extracted by the sensor
data extraction mechanism,

• a semantic modelling module operating primarily on
data extracted by the sensor data extraction mechanism
to correlate and classify concepts analysed by a given
entity and behavioural patterns exhibited in the process
of analysis and data retrieval.

Since the raw data would prove quite voluminous if
captured naïvely, the extent of interception must be limited
based on the maximum acceptable degradation in response
behaviour during operation, the storage and transmission
capacity available for intercepted data, and the capabilities
and performance of the mechanisms subsequently available
for analysis. Particularly the latter trade-offs are, however,
hard to assess quantitatively, since the need for further
analysis or data to corroborate a given hypothesis will
frequently arise only after the fact.

Moreover, the architecture described here assumes that
the systems on which it is to be deployed are in a benign
threat environment and administered by trusted personnel.
This permits significant portions of analytical processing to

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007194

be performed on the monitored systems themselves since
the total computational capabilities of even modest current
personal computers significantly exceed those required by
the user, except during brief periods of intense activity. As a
result of this excess capacity, the system is designed to
perform only the actual interception, pre-filtering, and
storage of data synchronous with the operations of the user
(or application program); the extraction, analysis, and
reporting steps are deferred as necessary to limit the
degradation in response time experienced by the user.

Moreover, only the interception, pre-filtering, and
storage must be performed at the operating system kernel
level; all other steps can be performed at the user level
(albeit protected from all user processes), thereby
significantly reducing the total developmental effort
required. The requirement for a benign threat environment
exists since otherwise tampering (e.g. initiating a hardware
reset of the system) or outright destruction of the computer
can erase or modify data required for analytical processes.
While incidents such as power failures or software flaws can
induce loss of data, the availability of additional compu-
tational power must be considered a significant factor in the
trade-off.

3. File system instrumentation
An analysis of an entity’s activities at the file system level
requires that both the metadata associated with the
operation and with the files themselves must be captured.
This, however, would not yield sufficient insights into the
actions performed by the entity as the actual content of the
files may not be evident based on the available metadata.

It is therefore necessary to capture a file’s content in
addition to the metadata for subsequent analysis. Given that
the strategies used by application programs for reading files
on behalf of users differ considerably, information on the
exact file locations accessed are typically not a reliable
indicator of the information viewed and processed by the
user. The granularity of analysis should therefore be
constrained to individual files and their content, not to the
access patterns exhibited in reading and writing these files.
However, since the identification and subsequent extraction
of textual data generally requires the entire file (see section
5) to be present for inspection, and analysis of the file also
requires sufficient contextual data (see section 6), it is
necessary to preserve the content of the entire file (or
database record) regardless of which portion was actually
accessed by the application process.

For advanced database management systems (e.g. the
Oracle DRBMS family), recording an individual’s access
patterns to both individual records and, where necessary,
record sets, is accomplished by inserting a trigger for this
purpose. For read-only access, it is sufficient to note the
precise table space, table row, and column (assuming a

relational or object-relational DBMS), if the database meta-
data has been recorded earlier (i.e. when an entity logs into
the given table space). Since database systems typically do
not retain overwritten records, write access for overwriting
and adding new records must be accompanied by a trigger
which duplicates the new record in the audit trail. This
overhead is clearly acceptable only in environments where
read operations clearly dominate write accesses. However,
given that the required accesses to the production data sets
are read-only accesses without requirements for extensive
locking, the performance impact is mainly owing to
additional transactions rather than lock contention.

For file systems, no such mechanism for the generation
of audit trails exists. To ensure transparency for all processes
accessing file systems on a monitored system regardless of
the application program used and to preclude the
monitoring system from being removed or bypassed by
unauthorised entities, embedding the requisite sensors at
the kernel level is highly desirable.

3.1 Microsoft Windows file system structure
The Microsoft Windows NT family of operating systems
(including Windows 2000, XP, and Vista — the following
uses the term Windows NT as a generic term unless a feature
or behaviour specific to a given version is noted) [2, 3]
exposes several APIs via environmental sub-systems. While
these APIs are largely procedural in nature, the internal
processing is asynchronous and packet-based in nature.
Regardless of which environmental sub-system is used, the
I/O operation eventually results in a call to the system service
dispatcher in kernel mode. This dispatcher handles the
distribution of the operations into the various kernel
components. For the discussion of file system mechanisms,
only some components are of interest.

Besides the I/O manager, the Windows management
instrumentation (WMI), plug and play (PnP) manager, and
the power manager components (these appeared beginning
with Microsoft Windows 2000) are also relevant for device
level operations. The central component for file system
operations, however, is the I/O manager. It creates I/O
request packets (IRPs) from incoming requests (with the
exception of Fast I/O, see below) and ensures that all drivers
for which an IRP is relevant are called with the IRP in the
proper sequence. Each IRP sent to a kernel-mode driver
represents a pending I/O request to that driver. An IRP will
remain outstanding until the recipient of the IRP invokes the
IoCompleteRequest() service routine for that particular
IRP. Invoking IoCompleteRequest() on an IRP results in
that I/O operation being marked as completed, and the I/O
manager then triggers any post-completion processing that
was awaiting completion of the I/O request. Each request
must be completed exactly once.

This mechanism lends itself to a layered processing
approach in which IRP messages are cascaded across several

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007 195

driver layers (possibly with additional IRP messages created
during the course of processing at lower levels). As a side
effect of this architecture, one can alter the functionality of
the operating system by interposing additional layers in the
driver stack. One example of such an interposition is shown
in Fig 1. The placement of the filtering layer in Fig 1 has the
advantage of such a module being able to intercept and
operate on generic (file-system-independent) operations
from upper operating system layers; this type of filter is
called a file system filter driver, and represents an approach
also commonly found in antivirus and encryption software.

Fig 1 File system interception mechanism for the Microsoft
Windows NT family of operating systems.

Microsoft Windows NT does not fully adhere to the
packet-based I/O model for all types of driver, though. A
special case exists in the case of file systems, and therefore
also for file system filter drivers. This exception is the Fast I/O
mechanism; here the I/O manager, cache manager, and the
various file system implementations (if they support this
mechanism) interact by means of explicit cross-module calls
instead of creating IRP messages (see Fig 2). This
performance enhancement adds considerable complexity to
the design of any file system filter drivers, since additional
communication paths must be handled. While it is possible
for a driver to signal that Fast I/O is not supported, this
results in an unacceptable performance degradation. The
reason for this is that instead of the Fast I/O call, an
equivalent call in the form of an IRP must be created by the

dispatcher. The creation of this IRP causes an additional
performance penalty on top of the relative performance
degradation incurred by not using Fast I/O. Moreover, once a
filter driver has indicated this lack of support for Fast I/O, all
subordinate lower-level drivers are also no longer con-
fronted with Fast I/O.

Microsoft Windows NT uses the filter driver mechanism
itself — not only for file systems, but also to support
additional functionality that is optional or can be made
available for different file system types with a single driver.
One example which was provided by the core operating
system beginning in Microsoft Windows 2000 is the single
instance store (SIS) file system filter driver (that conserves
disk space by removing multiple copies of a file and
replacing them with links to a single shared copy in a
common directory). Another application example of a file
system filter driver is a malware scanner — again, this type
of application requires access to file system semantics.

3.2 Instrumentation driver architecture
The instrumentation driver does not require modifications to
the file systems it is observing, which eliminates several
potential problems such as maintaining cache and meta-
data storage consistency (see, for example, Wolthusen [4]).
However it must be capable of monitoring all file systems
that are mounted both statically and dynamically (e.g. in the
case of a USB pen drive).

To ensure that this is the case, all file systems on a node
must be intercepted and brought under the control of the
instrumentation driver. This is achieved by registering a

local file
system driver

remote file
system driver

I/O manager cache manager VM manager

file system filter driver

executive

system support library

environment sub-system

class driver

port driver

miniport driver

HAL

storage

user application

page fault
handler

mapped page
writer

modified page
writer

file system driver

VMM

lazy writer

read ahead
thread

cache manager

filter driver

I/O manager

file read/write page faults

page
read/write

memory
mapping

page
faults

copy
read/write

Fast I/O
read/write

Fig 2 Interactions between file system components.

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007196

callback function with the I/O manager which is called
whenever a file system is loaded, which ensures that the
filter driver can attach itself to all file systems, even those
that are loaded dynamically at some point after booting.
Dynamic loading of file systems can, for example, also occur
when removable media (e.g. a UDF-formatted DVD disc) are
loaded. An implication of this is that the Filter driver must
be loaded prior to all file systems. This can be achieved by
assigning it either to the Filter driver group or associating
the necessary tag value with it in the registry settings for the
driver load sequence. The only file system for which such a
filter driver is not notified of a load event is the Raw file
system (permitting access to the raw device without any file
system semantics interpretation). However, given that only
privileged processes such as database management systems
require such access, monitoring can also be replaced by
inhibiting user access to the file system type. Once the
notification callback is called, the filter driver can attach
itself to the file system or file system recogniser, respectively,
and is then able to intercept the file system control requests
(with the minor functions LoadFS and MountVolume) and
attach itself to mounted volumes. Once it is attached to a
mounted volume, the filter driver can intercept all necessary
I/O requests.

The primary interception mechanisms for monitoring are
the observation of relevant metadata and file read and write
access, which are covered by the IRP_MJ_READ and
IRP_MJ_WRITE IRPs.

For obtaining metadata information, the IRPs
IRP_MJ_QUERY_INFORMATION and IRP_MJ_SET_
INFORMATION along with ancillary IRPs such as the
IRP_MJ_DIRECTORY_CONTROL and IRP_MJ_QUERY_
DIRECTORY requests must be intercepted.

Both metadata acquisition and interception are,
however, triggered by the processing of IRP_MJ_CREATE
requests. This IRP is issued when a file is accessed for the first
time (i.e.not just for file creation) by an upper level function.
The instrumentation driver can subsequently issue a number
of additional IRPs itself to gather all requisite information
(e.g. IRP_MJ_QUERY_INFORMATION) for later processing.
The metadata captured in this context includes the process
(user) accessing the file, its canonical location within the file
system, timestamps for access modes (reading and writing),
and the type of access desired.

The time of first access is also used to determine whether
the metadata (and subsequently also the actual file content)
is to be recorded at all. This step is dictated by the way the
metadata is accessed (and subsequently cached) within the
operating system. This can be configured dynamically by the
security administrator through the use of configuration files
that are cached at the kernel level. The reason for this
mechanism (compared to, for example, retaining data in the
system’s registry database) is primarily the performance

impact of switching between kernel and user modes as well
as limitations on such switches depending on the type and
status of a given IRP and possible conflicts in accessing the
registry with other (user) processes. Changes in
configuration are therefore to be effected only through an
explicit signal to the filter driver advising it to refresh the
configuration at the earliest possible time. A second
deselection criterion for metadata is caused by the fact that
Windows NT uses the same IRP not only for files but also for
a large variety of other objects, including transient entities
such as named pipes and shared memory segments. Since
these typically do not share file semantics and may be
performance sensitive, they should be omitted from
interception.

3.3 File shadowing mechanism
Two types of data must be retained in the audit trail. The first
consists of the metadata associated with the file access. This
is accomplished by using the list of open file handles
maintained by the operating system and creating a new
record if a process first accesses a file to avoid an excessive
number of records being generated. Depending on the
threat model it can also be desirable to suppress certain
spurious requests generated by the operating system (e.g.
the Explorer file system viewer or the common file open
dialogues) as these tend to enumerate metadata to generate
listings. Similarly, misbehaviour of the Windows 2000/XP
network share access mechanism can also trigger full
IRP_MJ_QUERY_INFORMATION enumeration behaviour for
all contained files when accessing directories via shares.
While it is conceivable that suppression of such records can
also mask misbehaviour, positive identification of the
relevant processes (and disallowing users to, for example,
install shell extensions for the Explorer program) can
minimise this risk.

Metadata records are stored as a single page (4 kB) per
access record, indexed by the canonical file name, subject
identity, and access time; only one record is written for a
given process indicating the first time a file is being accessed
(the actual index is built later in a user space process, not
described in this paper). The metadata record also contains a
reference to the location of the copy of the individual file.
This location (file name) is the full canonical name of the
original file, relocated to the storage file system (i.e. with an
additional prefix identifying the storage file system).

However, given that files may be changed arbitrarily
between the recording of metadata and an analysis of an
entity’s behaviour, it is necessary to shadow the files
accessed by the entities monitored. This can be effected by
mirroring the files read and written in secondary storage.
However, to avoid undue performance impact, a key
objective of the storage component for the file system
mechanism is the minimisation of required operations while
executing I/O operations, resulting in a somewhat inefficient
storage layout. Both metadata and individual files are

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007 197

allocated as sparse files. This feature is available only
beginning with Microsoft Windows 2000 in version 5.0 of
NTFS and later; it also requires that the sensor storage is
placed on an NTFS file system, which, however, is also highly
desirable for security reasons alone. Using sparse files results
in significant savings in storage required. The storage can be
allocated on any file system, but to retain the invisibility of
the system to the user, this is best achieved by allocating one
or more separate file systems to it and hiding it (at the level
of the file system filter driver) from the remainder of the
operating system, and hence from both observation and
manipulation by users and application programs. For reasons
of performance (since the mechanism makes use of the VM
architecture), it is desirable to locate these shadowing
volumes on local storage (see Wolthusen [1] for a discussion
of performance benchmarks).

All file systems of interest, including dynamically loaded
file systems, must be intercepted; to this end, a notification
callback for the file system minor functions LoadFS and
MountVolume are used. The only exception to this
mechanism, the Raw file system, is generally blocked for
regular user processes since it permits circumvention of
operating system access control mechanisms. Once the
interception mechanism has determined that a file is
accessed by a process of interest, metadata is stored in a
database file with fixed record size indexed by the canonical
file name (which must also include file system specific
structures such as alternate data streams supported by
NTFS), subject identity, and last access (indices are retained
in main memory).

Subsequent read access for these files is then augmented
by a write process that maps each page read occurring for a
write operation into a write page request for the storage
sub-system. This is achieved by performing a memory
mapping between the respective uses, resulting in efficient
caching and a reduced number of actual disk operations
incurred (i.e. at most one page write operation occurs for an
arbitrary number of page read operations provided that no
modification of the pages read occurs on the part of the
reading process). The result is a snapshot of all pages read by
the process. However, since the analytical processes require
not only the actual pages read but also context to re-
establish the semantics of file contents, backfiling of pages
unread by the user process is required.

While maintaining a separate cache of pages read by a
process would be feasible (mirroring existing data
structures), it is not reliably possible (particularly for remote
file systems and removable media) to detect future
operations on files, so shadowing entire files is required even
if only partial read operations have been effected. This is
accomplished by creating a worker thread that replicates the
unread pages by initiating page reads itself, independent of
the user process behaviour. The computational complexity,
and, in particular the I/O load of this operation, can be

reduced significantly by utilising the fact that the cache
manager will perform a predictive read-ahead itself. By
reusing the pages already cached and inducing predictive
read-ahead, both total I/O operations and cache memory
allocation can be minimised — however, there is a
significant cost incurred in the additional page writes that
must be scheduled.

4. Network stack instrumentation
In addition to traditional file-system-based operations,
information retrieval from network-based databases and
services are also of particular interest. Using additional
network-based sensors, this additional source of information
can also be subjected to surveillance and subsequent
analysis. Although there exists a large number of network as
well as application protocols for such retrieval systems, the
Internet protocol and HTTP (and HTTPS) protocol clearly
dominate as network and application protocol, respectively.

The mechanisms for interposition of an interception
mechanism (with additional transparent in-line proxying for
HTTPS (TLS) connections) have been described elsewhere
[5, 6]; by inserting kernel modules and driver components at
several locations within the Windows NT network protocol
stack, all inbound and outbound network traffic can be
observed transparently without affecting application
programs — for a discussion of the specific adaptations
required for extracting sensor data refer to Wolthusen [1].

5. Extraction of textual data
Sensor data extraction can occur in multiple steps on
demand from one of the detection mechanisms (which may
cache the extracted information separately) — all of which
are performed by a system service operating in the
background that does not communicate with regular user
processes. However, this process can still trigger file
backfilling in the file system filter driver through IOCTL calls
(in case the caching mechanism has not yet backfilled a file
selected for data extraction). The first extraction step is the
identification of possible outer encodings (e.g. file
compression, MIME transport encodings), followed by the
determination of file type — this must be performed
heuristically by analysing the start of the file for either
explicit file type information or sufficient data to deduce file
type, additional information may be gained from file names
or auxiliary data streams. Based on the file type
classification, files can be forwarded through an extensible
dispatcher system to media-specific extractors (e.g. for
textual, image or audio data), although the following section
is concerned exclusively with textual data.

For the class of textual data representation formats — as
for all other media types — there exists a large number of
file formats and encodings of which pragmatically only a
limited selection can be addressed. Other than for plain text

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007198

(for which the encoding may still need to be determined if
data is not presented in ISO 646 or 10646 format or the
chosen file format makes the encoding explicit), a translation
filter is still required. These filters can (partially) parse mark-
up languages such as SGML, XML, and HTML, although in
the latter case extraction is limited to removing mark-up
language since attributes cannot be extracted reliably as is
the case for SGML and XML. Of particular interest for XML
document decoding is the open office document type
descriptor (the open document format is currently
undergoing standardisation within the OASIS group). To
avoid custom development of complex filters that need to
be adapted frequently to version updates, proprietary text
formats (such as those used by earlier Microsoft Office
formats) can be reliably converted into XML and from there
into plain text using the OpenOffice import filters. This does,
however, incur a considerable performance cost compared
to a proprietary extraction mechanism, but with significantly
better results than in the case of simple extraction of
printable text strings. The mechanism as presently defined
is, however, limited to largely unstructured text since it
eliminates the schema information in case of structured
mark-up. Similar issues also exist with the popular Adobe
PDF format; however, here elements of the GNU XPdf
project can be used to extract plain text and encodings from
within the extractor service. Regardless of the preceding
steps, output of the text data extractor is a normalised ISO
10646 plain text data stream that does not contain
metadata. Other formats nominally containing textual data,
particularly Adobe PostScript data, may not be readily suited
for conversion in all cases since certain PostScript output
filters do not readily retain the context for words or even
individual characters, making the extraction mechanism
severely error-prone.

6. Analysis
The analysis to be performed over the documents and meta-
data gathered by the mechanisms described above is limited
in scope to identifying terms and conceptual units that may
lie outside the regular remit of an entity, typically acting as a
pre-filtering and alerting system for human expert inter-
vention. For this role, natural language understanding is not
required as such; rather, it is sufficient to apply statistical
techniques for anomaly detection commonly found in signal
processing and intrusion detection to data sets preprocessed
by natural language processing algorithms. This implies the
distinction of several types of behaviour:

• document retrieval and processing within a given
tasking can be characterised by a restriction to finite set
of concepts (clusters),

• conceptual drift results in the inclusion of a limited
number of related concepts into the tasking concept set
over time — such behaviour must be monitored to
avoid a knowledgeable individual inducing slow,
deliberate drift, thereby thwarting anomaly detection,

• abrupt changes in the constitution of the concept set
with limited overlap, that stabilise once the shift has
occurred, can be assumed to indicate a new tasking —
this may also be confirmed by supplemental in-
formation.

As noted above, detection of anomalies requires that
pertinent concepts can be identified automatically; this
must occur at several levels. A prerequisite step is the
creation of a concept dictionary along with thesauri for
synonyms and related terms. While an initial dictionary,
particularly of task-related terms, must be built up manually,
a number of techniques exist that permit automatic
extension and derivation of such databases [7—13];
depending on the types of documents to be processed, this
may also require extension to multilingual corpora [14, 15].
Based on such concept groupings, a second problem that
needs to be automated as far as possible is the separation of
conceptual clusters through text categorisation [16, 17]. A
number of approaches have been proposed for this
technique, including linear classifiers [18], context-sensitive
learning mechanisms [19], Bayesian techniques [20], and
decision trees [21], although typically a combination of
techniques and algorithms is used, frequently based on
boosting-based classifier committees, support-vector
machines and regression methods. Such classifiers exhibit
adequate performance even for very large category sets
[22]. In particular, boosted Bayesian networks have been
successfully used on large corpora of documents
(approximately 105) and categories (approximately 104)
over extended periods [23—26]; by combining multiple
properties such as term properties, relations over terms and
documents, and document properties (e.g. location in the
file system, metadata attributes) and boosting multiple
weak hypotheses, separation can be obtained with limited
term occurrences [17].

Although the resulting data set is still of considerable
dimensionality, a reduction of several orders of magnitude
can be achieved by categorisation as discussed above. The
resulting data set can now be subdivided manually (e.g.
using techniques from formal concept analysis [27, 28]) to
achieve further dimensionality reduction; alternatively,
analytical techniques suitable for such high-dimensionality
systems can be employed. In any case, one additional
dimension (time) must be added to the data set.

Given the above processes, the behavioural anomalies
described earlier can now be identified using statistical
analysis techniques also commonly used in intrusion
detection. A technique particularly suited for such analysis is
multidimensional scaling (MDS) [29—31] followed by
identifying centres of gravity for identified clusters and
outliers from these clusters [32—34]; this can occur either
automatically (based on fixed scaled thresholds) or in
preparation for visual inspection (although in this case the
mapping of a high dimensional space on to a two- or three-

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007 199

dimensional plot does not necessarily preserve structural
properties such as linear separability of categories).

For each two documents of the observation set
(obtained by restricting the data set to a given entity
(individual) and a duration) i, j, a proximity metric Pij is
defined such that Pij is smaller if the similarity between i and
j is larger. A configuration X is constituted by n points in an
m-dimensional space and can be considered an n × n matrix
of the co-ordinates of the n points along m axes of a
Cartesian co-ordinate system. The distance of points i and j
in X, dij, can now be computed as:

where xkl is the co-ordinate of point k along the axis l of the
co-ordinate system. In the simplest (metric) case, the
identity mapping is used to map the proximity measure
(f (pij) = pi j = di j) by way of a Minkowski distance; this,
however, is justified only if the dissimilarity measure can
be embedded in a metric space (K, δ) where K is a set of
points with and δ(x,y) is a function

such that:

Non-metric MDS [30, 35] employs arbitrary functions f
and merely assumes a monotonic relation between orderings
of similarities and rank order of metric distances in a metric
space; for the purposes of this discussion, however, metric
MDS suffices. It should be noted, however, that these are
merely basic examples of techniques that can be applied to
the problem of identifying clusters and anomalies within the
reduced semantic data space and may not necessarily
provide optimum results.

7. Conclusions
The paper has described an efficient mechanism for shadow-
ing the activity of users with regard to the handling of
documents (focused on textual documents, but extensible to
other media types) that may be considered abnormal but
cannot be prevented entirely using access control
mechanisms. The basic mechanism has many uses in an
operational risk management system, from generating audit
logs for compliance monitoring, forensic investigations and
other purposes, to providing input to behavioural analysis
functions. The latter application has been the main focus of
the paper.

The extraction mechanism is embedded in the operating
system and makes use of caching strategies for file system
access by the operating system to provide a shadowing of

both files (documents) and metadata that does not impede
regular operations. Extraction of text and the application of
clustering for concepts using natural language processing
allows the subsequent application of multidimensional
scaling and related processing techniques for anomaly
detection which can occur either automatically or as a
targeted preprocessing step for human intervention.

Future work will require a detailed usage pattern and
performance analysis in operation, using various
applications, since the file system access patterns
(particularly of custom application) can have significant
adverse impact on overall performance that is predicted on
average case behaviour. While the textual and conceptual
processing steps and analysis were not the focus of the work
reported here, this area is clearly a subject for further
research, particularly investigating the impact of using
different and multilingual corpora on the accuracy of
clustering and anomaly detection.

Acknowledgments
Parts of the research reported here were conducted while
the author was at the Norwegian Information Security
Laboratory of Gjøvik University College, Norway and
Fraunhofer-IGD, Darmstadt, Germany.

References
1 Wolthusen S: ‘Molehunt: Near-line Semantic Activity Tracing’, in

Proceedings from the Sixth Annual IEEE SMC Information Assurance
Workshop, United States Military Academy, West Point, NY, IEEE Press,
pp 410—418 (June 2005).

2 Russinovich M E and Solomon D A: ‘Microsoft Windows Internals’, 4th
Edition, Microsoft Press, Redmond, WA (2004).

3 Solomon D A and Russinovich M E: ‘Inside Microsoft Windows 2000’,
3rd Edition, Microsoft Press, Redmond, WA (2000).

4 Wolthusen S: ‘Security Policy Enforcement at the File System Level in
the Windows NT Operating System Family’, in Proceedings 17th Annual
Computer Security Applications Conference, ACSAC’01, New Orleans,
LA, IEEE Press, pp 55—63 (December 2001).

5 Rademer E and Wolthusen S: ‘Transparent Access To Encrypted Data
Using Operating System Network Stack Extensions’, in Steinmetz R,
Dittman J and Steinebach M (Eds): ‘Communications and Multimedia
Security Issues of the New Century’, Proceedings of the IFIP TC6/TC11
Fifth Joint Working Conference on Communications and Multimedia
Security, CMS’01, Darmstadt, IFIP, Kluwer Academic Publishers, pp
213—226 (May 2001).

6 Wolthusen S: ‘Tempering Network Stacks’, in Proceedings of the NATO
RTO Symposium on Adaptive Defense in Unclassified Networks,
Toulouse, France, NATO Research and Technology Organization (April
2004) .

7 Crouch C J: ‘An Approach to the Automatic Construction of Global
Thesauri’, Information Processing and Management, 26, No 5,
pp 629—640 (1990).

8 Berry M W (Ed): ‘Survey of Text Mining: Clustering, Classification and
Retrieval’, Springer-Verlag, Heidelberg (2003).

9 Senellart P P and Blondel V D: ‘Automatic Discovery of Similar Words’, in
Berry M W (Ed): ‘Survey of Text Mining: Clustering, Classification and
Retrieval’, Springer-Verlag, Heidelberg (2003).

10 Fellbaum C J (Ed): ‘WordNet: An Electronic Lexical Database’, MIT Press,
Cambridge, MA (1998).

dij xia xja– m

a 1=

m
∑

⎝ ⎠
⎜ ⎟
⎛ ⎞

1
m---

=

x y z K∈, ,
δ:K K 0→×

δ x y,() 0 x⇔ y= = minimality ... (1)

δ x y,() δ y x,()= symmetry ... (2)

δ x z,() δ y x,() δ y z,()+≤ triangle inequality ... (3)

Automated extraction of behavioural profiles from document usage

BT Technology Journal • Vol 25 No 1 • January 2007200

11 Lesk M: ‘Automatic Sense Disambiguation Using Machine Readable
Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone’, in
Proceedings of the 5th Annual International Conference on Systems
Documentation, Toronto, Ontario, Springer-Verlag, pp 24—26 (June
1986).

12 Banerjee S and Pedersen T: ‘An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet’, in Proceedings of the Third
International Conference on Intelligent Text Processing and
Computational Linguistics, CICLING-02, Mexico City, Mexico, Lecture
Notes in Computer Science, Vol 2276, Springer-Verlag, pp 805—810
(February 2002).

13 Banerjee S and Pedersen T: ‘Extended Gloss Overlaps as a Measure of
Semantic Relatedness’, in Proceedings of the Eighteenth International
Joint Conference on Artificial Intelligence IJCAI-2003, Acapulco,
Mexico, Morgan Kaufmann, (August 2003).

14 Pazienza M T (Ed): ‘Information Extraction: Towards Scalable, Adaptable
Systems’, LNAI 1714, Springer Verlag, Heidelberg (1999).

15 Somers H: ‘Knowledge Extraction from Bilingual Corpora’, in Pazienza M
T (Ed): Information Extraction: Towards Scalable, Adaptable Systems’,
Lecture Notes in Artificial Intelligence, Vol 1714, Springer Verlag,
Heidelberg (1999).

16 Manning C D and Schütze H: ‘Foundations of Statistical Natural
Language Processing’, MIT Press, Cambridge, MA (1999).

17 Sebastiani F: ‘Machine Learning in Automated Text Categorization’,
ACM Computing Surveys, 54, No 1, pp 1—47 (2002).

18 Lewis D D, Schapire R E, Callan J P and Papka R: ‘Training Algorithms for
Linear Text Classifiers’, in Proceedings of the 19th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Zurich, ACM Press, pp 298—306 (August 1996).

19 Cohen W W and Singer Y: ‘Context-Sensitive Learning Methods for Text
Categorization’, ACM Transactions on Information Systems, 17, No 2, pp
141—173 (1999).

20 Makoto Iwayama T T: ‘Hierarchical Bayesian Clustering for Automatic
Text Classification’, in Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, IJCAI-1995, Montreal, QC,
Morgan Kaufmann, pp 1322—1327 (August 1995).

21 Apté C, Damerau F and Weiss S M: ‘Automated Learning of Decision
Rules for Text Categorization’, ACM Transactions on Information
Systems, 12, No 3, pp 233—251 (1994).

22 Yang Y, Zhang J and Kisiel B: ‘Text Categorization: A Scalability Analysis
of Classifiers in Text Categorization’, in Proceedings of the 26th Annual
International ACM SIGIR conference on Research and Development in
Information Retrieval, Toronto, ON, ACM Press, pp 96—103 (July
2003).

23 Fuhr N: ‘A Probabilistic Model of Dictionary Based Automatic Indexing’,
in Proceedings of RIAO-85, First International Conference ‘Recherche
d’Information Assistee par Ordinateur’, Grenoble, France, pp 207—216
(March 1985).

24 Fuhr N, Hartmann S, Lustig G, Schwantner M, Tzeras K and Knorz G:
‘AIR/X: a Rule-Based Multistage Indexing System for Large Subject
Fields’, in Proceedings of RIAO-91, Third International Conference
‘Recherche d’Information Assistee par Ordinateur’, Barcelona, Spain,
pp 606—623 (April 1991).

25 Knorz G: ‘A Decision Theory Approach to Optimal Automatic Indexing’,
in Proceedings of the 5th Annual ACM Conference on Research and
Development in Information Retrieval, Berlin, pp 174—193, ACM Press
(May 1982).

26 Tzeras K and Hartmann S: ‘Automatic Indexing Based on Bayesian
Inference Networks’, in Proceedings of the 16th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, Pittsburgh, PA, ACM Press, pp 22—35 (June 1993).

27 Ganter B and Wille R: ‘Formal Concept Analysis — Mathematical
Foundations’, Springer Verlag, Heidelberg, Germany, originally released
in German as ‘Formale Begriffsanalyse — Mathematische Grundlagen’
(1998).

28 Priss U: ‘Linguistic Applications of Formal Concept Analysis’, in
Proceedings of the First International Conference on Formal Concept
Analysis, ICFCA 2003, Lecture Notes in Artificial Intelligence, Vol 2276,
Springer-Verlag (March 2003).

29 Kotz S, Johnson N L and Read C B (Eds): ‘Encyclopedia of Statistical
Sciences, 5, John Wiley & Sons, Inc, New York (1985).

30 Kruskal J and Wish M: ‘Multidimensional Scaling’, Vol 07-011 of Safe
University Paper Series on Qualitative Applications in the Social
Sciences, Sage Publications, London, UK (1978).

31 Young F W: ‘Multidimensional Scaling’, in Kotz S et al (Eds):
‘Encyclopedia of Statistical Sciences’, Vol 5, John Wiley & Sons Inc, New
York (1985).

32 Kruskal J B: ‘The Relationship between Multidimensional Scaling and
Clustering’, in van Ryzin (Ed): ‘Classification and Clustering’, Academic
Press, New York (1977).

33 Strehl A: ‘Relationship-based Clustering and Cluster Ensembles for
High-dimensional Data Mining’, PhD thesis, University of Texas at
Austin, Austin, TX (2002).

34 van Ryzin J (Ed.): ‘Classification and Clustering’, Academic Press, New
York (1977).

35 Kruskal J B: ‘Multidimensional Scaling by Optimizing Goodness of Fit to
a Nonmetric Hypothesis’, Psychometrika, 29, pp 1—27 (1964).

Stephen Wolthusen joined the information
security group at Royal Holloway as a lecturer
and also holds an associate professorshp at
the Norwegian Information Security Lab-
oratory at Gjøvik University College, Norway.
Before joining the faculty of Royal Holloway
he worked at the Fraunhofer-IGD laboratory
in Darmstadt, Germany as a deputy division
chief to which he is still affiliated as a senior
scientist. He is author of several books, has
edited multiple conference proceedings
volumes and also holds several German and
international patents. His primary research
interests are in the areas of information

assurance and the use of formal methods for modelling, specification, and
verification as well as models and analytical techniques for the protection of
critical infrastructures. He received both his Dipl-Inform degree in computer
science and a PhD in theoretical computer science from TU Darmstadt,
Germany.

