
Security Policy Enforcement at the File System Level in the Windows NT
Operating System Family

Stephen D. Wolthusen
Fraunhofer-IGD

Security Technology Department
Rundeturmstr. 6, Darmstadt 64283, Germany

wolt@igd.fhg.de

Abstract

This paper describes the implementation of an enforce-
ment module for file system security implemented as part
of a security architecture for distributed systems which en-
forces a centrally administered security policy under the
Windows NT operating system platform. The mechanism
provides mandatory access control, encryption, and audit-
ing on an individual file basis across distributed systems
while being fully transparent to both users and application
programs and functioning regardless of the type of file sys-
tem or its attachment mechanism.

1. Introduction

Providing security at the file system level is part of
the basic security functionality provided by virtually all
general-purpose operating systems; however, the limita-
tions of file system protection only via data structures main-
tained by the operating system have long been obvious. One
problem is that such protection mechanisms require the op-
erating system providing the service to be active. This as-
sumption can be violated in non-networked configurations
in at least two cases. One case occurs when storage media
are accessed at the local node, but with an operating sys-
tem other than the one enforcing the security mechanisms
(possibly just another instance of the same operating sys-
tem, only configured differently), the other occurs when the
storage media are exposed; typically another system will
not honor protections set for removable media.

The latter is part of a larger problem one is faced with in
a heterogeneous distributed environment, namely the lack
of enforced conformance to a consistent, centrally enforced
security policy focused on individual data objects instead of
node interrelations. While this can be achieved partially us-
ing current COTS operating systems, it typically requires a

homogeneous network environment and unified administra-
tion of all nodes in such a network.

What we therefore consider desirable is an architecture
to provide access and use control over data objects at a suf-
ficiently high level of abstraction that can be enforced even
if the object (e.g. document) is moved across network node
boundaries, combined with a comprehensive audit trail en-
compassing all operations on these objects. To ensure that
the enforcement mechanisms are honored in case of a file
system — other areas that must be dealt with are network
and general I/O mechanisms — we propose to use object
labeling in conjunction with encryption at this level as the
tool to achieve this goal.

This enforcement mechanism is part of a larger system
that segregates security policy determination and decisions
based on such policy rules from enforcement [18, 10, 12],
but does so at the level of network nodes, i.e. there exists a
set of servers that provide consistent policy information to
all systems within the protected set of nodes.

This paper concentrates on a description of the imple-
mentation of the file system security enforcement compo-
nent on the Microsoft Windows NT family of operating sys-
tems; this mechanism has been under ongoing development
by our group since early 1998. First working prototypes
were finished in 1998; the mechanisms and implementation
have been evolving constantly since.

The background and basic concepts of the system are
discussed in section 2, followed by an overview of the Mi-
crosoft Windows NT file system I/O architecture in section
3 and a discussion of the implementation of the enforcement
mechanism in section 4.

2. Background

Security architectures and mechanisms reaching beyond
addressing problems found in individual areas such as net-
work security or file system security have mainly been pur-



sued as implementations of entire operating environments
with security as their focus [13]. While this is desirable
for a number of reasons, particularly a high degree of as-
surance that can be achieved with such an architecture such
as the Flask/Fluke [16] architecture, such an approach is
limited in its immediate appeal since a migration of hosts
and especially application programs to the new environment
would be required. It is, however, imperative that security
mechanims are implemented at the operating system level
to be meaningful [5].

In the design of the architecture described here we have
therefore attempted to ensure that the required security
mechanisms can be retrofitted to existing operating sys-
tems. To ensure interoperability with existing COTS and
custom applications, these modifications and security en-
hancements must be kept invisible to both applications and
users — at least while they are operating within the limits
set by the security policy; due to typically less than robust
error management one must also ensure that failures closely
mimic behavior in case of failures that such applications ex-
pect.

Since the security architecture must function in a hetero-
geneous, networked environment, it is necessary to protect
a number of aspects of the system, namely the file system,
network, and general I/O mechanisms. One must assume
that each individual node is exposed to a potentially hos-
tile environment and peer nodes which are not necessarily
equipped with the same security enhancements. At the same
time it is necessary to enforce a consistent and concurrent
view of a security policy that is identical across all nodes,
principals and objects under the nominal control of such a
policy.

The architecture described here deals with these issues in
a two-pronged approach. The first guiding principle is the
separation of policy from enforcement; consistent enforce-
ment is assured by performing this separation within the
network: nodes called ERMs (externally controlled refer-
ence monitor) provide consistent policy information while
all other nodes enforce this policy at the operating system
level based on decisions either related to the enforcement
subsystem directly from a node distributing policy data and
decisions or as a result of a delegated derived security pol-
icy.

This separation of concern between end nodes enforc-
ing security policy and nodes controlling policy data can
be performed using externally controlled reference moni-
tors (ECRM). Using a proper balance between centralized
decisions and locally delegated security policies, the overall
network load — which is limited by latency, not bandwidth
— can be kept at an acceptable level. Details on the ECRM
mechanism can be found in [18].

The second element of the architectural approach is to
use a layering of abstraction levels when dealing with spec-

General I/O Layer

Applications/
User/System

Behavior

File System Layer

System Call Layer

Network Layer

Figure 1. Layering of Protection Elements

ifying a security policy. To permit a basic protection mech-
anism that can be specified easily, an outer layer of coarse
granularity is necessary that surrounds the entire node. This
implies all inputs and outputs that are handled by a node,
particularly all network traffic and file systems regardless
of their type or physical location. Refinement of the lower
granularity controls can then occur by analyzing, modify-
ing, and controlling activities at higher semantical levels
such as sequence analyses of application and user behavior
(see figure 1). This has several pragmatic benefits, the most
important of which is the reduction in the required mini-
mum complexity of the security policy and the default-deny
stance that can be implemented easily. Other approaches
[2] require a detailed specification of permitted behavior of
principals; this can become an issue once reasonably com-
plex application programs (e.g. COTS word processors)
must be fitted into a policy. Details on the layering approach
as well as on networking aspects of this architecture can be
found in [19].

In case of the system component described here, the se-
curity architecture must detect the use of file systems as op-
posed to direct access to lower-layer interfaces or other ac-
cess semantics and permit file system mechanisms to cross
the general I/O protection layer (and if necessary, as is e.g.
in the case of file servers or network attached storage, the
network layer) since policy control in such cases is best en-
forced with the semantic information at the file system layer
unless an even higher level abstraction layer can be identi-
fied for an operation.



2.1. File System Protection Mechanisms

In the architecture described here, files (as well as other
objects such as network streams) are affixed with a label
that is handled by the security subsystem and is transparent
to the remainder of the system (i.e. both lower and upper
layer drivers of the host operating system as well as ap-
plication programs and users are oblivious to the labeling
mechanism). These labels are protected against manipula-
tion by being tied to the content (i.e. unique identifying
characteristics) of the object; the actual policy information
is contained in either the ERM node providing policy infor-
mation or is temporarily delegated to the (protected) secu-
rity subsystem, the ECRM. To ensure enforcement even if
the security subsystem is inoperative, automatic encryption
can and should be used on the contents of thus labeled ob-
jects. The encryption mechanism also necessitates the pro-
vision of policy information in case an object is transferred
to another node.

There is one category of file objects to which labels must
not be affixed; this category consists mainly of files which
are required for bootstrapping the entire system and which
are accessed prior to the enforcement system being loaded.
Even if such files were only labeled and not encrypted, this
could lead to unpredictable results.

As a general rule, however, each file object must carry
an object label even if only to identify the object. Based
on the identity of the file object, the ECRM can then deter-
mine what – if any – actions must be applied to a given file
based on the security policy or security policies applicable
to either the object or to an operation.

In a simple implementation this policy could consist only
of enforcing access controls (e.g. discretionary access con-
trol) that are independent of the host operating system and
enforced consistently for identified objects across an entire
distributed system. An application program or other pro-
cess attempting to access such a file would be confronted
with an error code matching regular error codes for the op-
erating system.

Security models requiring classification can be imple-
mented by specifying a security which requires rewriting
or creation of object labels that assign an object label iden-
tity belonging to an identity class hierarchy reflecting the
classification level. Other models and mechanisms such as
RBAC and domain and type enforcement are also subsumed
by this mechanism.

However, if enforcing information flow controls is of
concern, mere access control is, as described in section 1,
insufficient even when coupled with mandatory labeling and
classification.

Instead, encryption must be used under such circum-
stances. This can be done transparently within the file sys-
tem protection mechanism, ensuring that only after passing

through a trusted subsystem information is made available
to a process (subject) also under the control of the security
policies being enforced.

For this purpose, as with other decisions regarding op-
erations, the ECRM can – depending on what the overall
security policy dictates – either query an authoritative ERM
for a decision, possibly including key material, or it can re-
sort to consulting a local cache of policy decisions and rules
for which an authoritative ERM has specified a lifetime.

The file system layer has access to other important in-
formation. This information correlates users and files they
are using. We need to distinguish three types of files. The
first type of file is the executable file as seen by the op-
erating system. Such executables, which usually consist
of several parts (a main file and a number of dynamically
loaded shared objects or dynamically linked libraries), can
be identified and matched against security policy rules con-
taining approved applications. The second type of file is
harder to identify when located at the file (operating) sys-
tem layer and involves all scripting languages, i.e. mecha-
nisms that involve files classified as non-executable by the
operating system but executed by an intermediate applica-
tion program. This class of applications includes macro lan-
guages found in many applications and has been the source
of a large number of successful attacks. Here only heuris-
tics and elaborate checks can attempt to identify and protect
against malicious code. The third type of file consists of
plain data objects. This information can be combined with
other information collected at different layers. In particular,
the integration of the file system layer permits the dynamic
“sandboxing” of applications.

One example of such sandboxing in case of a MLS-like
policy is the dynamic restriction of a process from making
certain network connections once it has accessed a data ob-
ject whose classification label does not match with the clas-
sification of a given network peer. The same mechanism
obviously also is applicable to operations within the node
local file system and can be used to implement a purely lo-
cal MLS configuration. In most cases, however, caching
and common networked file systems will require coordina-
tion of policy across node boundaries.

3. File System I/O Structure in Microsoft Win-
dows NT

The Microsoft Windows NT family of operating systems
[14, 15] exposes several APIs via environmental subsys-
tems. While these APIs are largely procedural in nature, the
internal processing is asynchronous and packet-based in na-
ture. In this regard, it shares more with OpenVMS [3] than
with Unix [4], although one major difference to OpenVMS
is that, like Unix System V Release 4 and later derivatives,



User
Application

Environmental Subsystem

System Support Library

Executive

I/O Manager
Cache

Manager
VM

Manager

Filter Driver

Local File
System Driver

Class Driver
Port Driver

Miniport Driver

HAL

Remote File
System Driver

Storage

Figure 2. Components involved in file system
I/O

it has a unified file system cache and virtual memory archi-
tecture.

Regardless of which environmental subsystem is used,
the I/O operation eventually results in a call to the system
service dispatcher in kernel mode. This dispatcher handles
the distribution of the operations into the various kernel
components1. For the discussion here, only some compo-
nents are of interest. Besides the I/O Manager, the Win-
dows Management Instrumentation (WMI), Plug and Play
(PnP) Manager, and the Power Manager components (these
appear only with Microsoft Windows 2000 and later revi-
sions) are also relevant for device level operations.

The central component, however, is the I/O manager. It
creates I/O request packets (IRP) from incoming requests2

and ensures that all drivers for which an IRP is relevant
are called with the IRP in the proper sequence. Each IRP
sent to a kernel-mode driver represents a pending I/O re-
quest to that driver. An IRP will continue to be outstand-

1Since Microsoft Windows NT 4.0, graphics interfaces are part of the
kernel mode and bypass this mechanism. The DirectX family of APIs
even allows bypassing of normal operating system protection (memory and
devices) by user mode appliations.

2With the exception of Fast I/O which bypasses this step, loosely pat-
terned after the OpenVMS concept by the same name

ing until the recipient of the IRP invokes theIoCom-
pleteRequest() service routine for that particular IRP.
Invoking IoCompleteRequest() on an IRP results in
that I/O operation being marked as completed, and the I/O
Manager then triggers any post-completion processing that
was awaiting completion of the I/O request. Each request
must be completed exactly once.

This mechanism lends itself to a layered processing ap-
proach in which IRPs are cascaded across several driver lay-
ers (possibly with additional IRPs created along the way at
lower levels). As a side effect of this architecture, one can
alter the functionality of the operating system by interpos-
ing additional layers in the driver stack. One example of
such an interposition is shown in figure 2.

The placement of the filtering layer in figure 2 has the
advantage of such a module being able to intercept and op-
erate on generic (file-system independent) operations from
upper operating system layers; this type of filter is called
a file system filter driver. Most importantly, the depicted
interposition layer allows operations on the file level. Com-
mon disk encryption mechanisms typically work by adding
special disk drivers or lower level filter drivers; as a result
they are dependent on specific hardware or are not able to
work on individual files; in addition, they do not support re-
mote file systems. While handling files individually entails
a significantly higher complexity, it is necessary to support
the semantics found in the system described here. Interpo-
sition at this level is also largely3 oblivious to the type of
file system.

Microsoft Windows NT does not fully adhere to the
packet-based I/O model for all types of drivers, though. A
special case exists in case of file systems, therefore also
for file system filter drivers. This exception is the Fast
I/O mechanism; here the I/O Manager, Cache Manager,
and the various file system implementations (if they support
this mechanism) interact by means of explicit cross-module
calls instead of creating IRPs. This performance enhance-
ment adds considerable complexity to the design of any file
system filter drivers since additional communication paths
must be handled. While it is possible for a driver (partic-
ularly a filter driver – this has the result that lower-level
drivers are also not confronted with Fast I/O for a given
call) to signal that Fast I/O is not supported with the result
that an equivalent request is created in the form of an IRP
and sent again by the system service dispatcher, the double
performance penalty thus incurred is not justifiable.

Microsoft Windows NT uses the filter driver mechanism
— not only for file systems — itself to support additional
functionality that is optional or can be made available for
different file system types with a single driver; one exam-
ple in Microsoft Windows 2000 is the Single Instance Store

3There are some differences in behavior for remote file system redirec-
tors



File System Driver

Filter Driver

I/O Manager

Memory Mapping

Page Faults

Page Faults

Page Read/Write

Copy Read/Write

Fast I/O
Read/Write

File Read/Write

Cache
Manager

Lazy Writer

Read Ahead Thread

 V
M
M

Page Fault Handler

Mapped Page Writer

Modified Page Writer

Figure 3. Interactions between file system
components

(SIS) file system filter driver that conserves disk space by
removing multiple copies of a file and replacing them with
links to a single shared copy in a common directory. An-
other application example of a file system filter drivers is a
virus scanner; again, this type of application requires access
to file system semantics.

Some care needs to be taken in case a file system fil-
ter driver modifies data on underlying file systems since the
unified cache and VM architecture results in Fast I/O re-
quests bypassing the regular file system (filter) and access-
ing the cache directly as shown in figure 3. Failing to update
all relevant access paths could thus lead to inconsistencies.

Some additional details can be found in [8, 9], although
regrettably most of the internal interfaces that need to be
supported are largely undocumented. It should, however,
be noted that apart from issues arising from defects removed
and occasionally introduced and some minor additions, the
internal file system APIs of this platform have remained rel-
atively stable despite major changes in the portions of the
system visible to most users and developers.

4. Implementation

This section discusses several aspects of implementing
the transparent file system security mechanism by means of
inserting a file system filter driver into the operating systems
of the Microsoft Windows NT platform.

4.1. Structure and Bootstrapping

Each kernel mode driver must provide aDriverEn-
try() function that is called by the I/O manager on
driver load. This function performs initialization opera-
tions of the driver such as reading parameters from reg-
istry settings, allocating data structures,DeviceObject ,
andSymbolicLink objects, and initializing the call table
(MajorFunction table).

TheMajorFunction table is a list of dispatch points
supported by the driver. Each I/O request is packed into
an IRP by the I/O manager and contains all information
describing the request including the desired operation (the
MajorFunction ). The driver may set an entry in this ta-
ble for eachMajorFunction it wishes to process with its
own dispatch functions.

The enforcement driver architecture consists of two
parts, namely a filter driver dealing with file-system specific
parts and another kernel module or driver (i.e the ECRM –
which is realized as a pseudo device driver, but is in fact
accessed by direct kernel mode calls instead of using an
IRP-based mechanism) which contols the actual policy op-
erations such as deciding on access rights or encryption and
decryption. This latter driver is called on by the file system
filter driver for all intercepted calls on the file system and
encapsulates all necessary operations such as communica-
tion with a cryptographic coprocessor which may house the



actual ECRM mechanism.
As a result, no cryptographic operations or other opera-

tions related to policy are visible outside of the ECRM. If
such operations are delegated to a tamper-resistant crypto-
graphic coprocessor, this ensures that the policy decisions
and key material used for enforcing such decisions cannot
be modified unless considerable effort is expended.

The filter driver mechanism must be logically located
on top of the driver modules whose behavior it wishes to
change, augment, or replace. It is also possible for such a
filter driver to create new calls to (among others) such lower
layer drivers as may be the case if some more elaborate in-
formation or modification to the file system are required.
The filter driver described here is located above the file sys-
tem and is therefore able to work on and identify individual
files and does not deal with individual device types. File
system filter drivers operating below the file system driver
level (but above storage class drivers) are somewhat mis-
named as they are only capable of working on amorphous
data blocks without file system semantics in the calls reach-
ing such layers as file operations are broken up into block--
based operations by the respective file system drivers.

The ability to operate on files allows the implementa-
tion to gather information on the entities wishing to perform
the respective operation and forward this information to the
ECRM for further processing. If necessary, each individual
file can therefore be treated differently if possesses an iden-
tifying feature and the security policy or security policies to
be applied in such a case dictate this behavior.

To ensure that the security policy is enforced uniformly,
all file systems on a node must be intercepted and brought
under the control of the security system. This is achieved by
registering a callback function with the I/O manager which
is called whenever a file system is loaded. This ensures
that the filter driver can attach itself to all file systems, even
those that are loaded dynamically after booting. Dynamic
loading of file systems can, for example, occur when re-
movable media are loaded. An implication of this is that the
filter driver must be loaded prior to all file systems. This
can be achieved by assigning it either to the “Filter” driver
group or associating the necessary tag value with it in the
registry settings for the driver load sequence.

The only file system for which such a filter driver is not
notified of a load event is the Raw file system (permitting
access to the raw device without any file system interpre-
tation). In this case the filter driver must attach itself ex-
plicitly to this file system. Another exception from the noti-
fication mechanism that must be dealt with explicitly is the
LAN Manager redirector used for accessing network shares.
This, however, appears to have been an oversight by the de-
velopers of Windows NT since this behavior is no longer
observed under Microsoft Windows 2000.

Once the notification callback is called, the filter driver

can attach to the file system or file system recognizer, re-
spectively, and is then able to intercept the file system
control requests (with the minor functionsLoadFS and
MountVolume ) and attach itself to mounted volumes.
Once it is attached to a mounted volume, the filter driver
can intercept all necessary I/O requests.

4.2. Considerations for modified read and write be-
havior

As a consequence of the unified virtual memory and file
system architecture in the Microsoft Windows NT operating
system family, it is not sufficient to modify only the behav-
ior of read (IRP MJ READ) and write (IRP MJ WRITE)
operations. Doing so would lead to a partially encrypted
(or otherwise modified by the filter driver) cache since in
addition to simple read and write requests, memory map-
ping operations (e.g. used for mapping executable files into
memory) would go a different route from ordinary opera-
tions. In case of smart read-ahead by the file system or of
explicit mapping, there would also arise a possible incon-
sistency. Paging requests therefore must also be handled.

4.3. File size considerations

The actual file sizes on the file system that is intercepted
by the filter driver and the file sizes reported to the upper
levels of the system and eventually to the user-mode API
may differ from one another.

There are two reasons for this. One is that it is nec-
essary to maintain an in-line object label identifying the
data object (file) for administrative purposes. This could
be handled more elegantly for file systems supporting mul-
tiple data streams such as NTFS, but since removable media
(e.g. FAT floppy disks) and network file systems (e.g. NFS
file servers) do not necessarily offer this feature, the more
cumbersome in-line mechanism must be used. The second
reason is that in case an encryption mechanism is employed
for a data object, the algorithms used may dictate padding
to a certain multiple of bytes; the end of the padding must
also be stored in-line.

Neither the object label nor the padding data size change
may be exposed to the upper levels of the driver and execu-
tive architecture.

As a result, the file system filter driver must adjust the
file size reported by the underlying file systems in IRPs
such asIRP MJ QUERYINFORMATIONpossibly used for
obtaining size as well asIRP MJ SET INFORMATION,
which could be used to adjust file length informa-
tion, and the similarIRP MJ DIRECTORYCONTROLand
IRP MJ QUERYDIRECTORYrequests.

The padding and object label information is stored at the
end of the file stored on the lower-level file system. This



avoids complications with memory-mapped files and con-
tinuous offset adjustments that would be necessary if the
information were to be stored as a header since otherwise
page-sized requests from upper levels of the system would
in fact straddle page boundaries and thus incur a significant
performance penalty. To the file systems below the filter
driver, however, the data looks like the contents of an ordi-
nary file.

Another issue the filter driver must deal with is the
locking of files by applications since it may have to mod-
ify the file as a result of actions by upper layers that
would not require file modification without the presence
of the security mechanisms. To be able to access such
files, a so-called locking key must be known. There-
fore, IRP MJ LOCKCONTROLrequests also must be in-
tercepted.

4.4. Information gathering and processing

The processing ofIRP MJ CREATErequests is of crit-
ical importance. This IRP is issued when a file is accessed
for the first time (not just for file creation) by an upper level
function, so it is possible to perform a number of bookkeep-
ing tasks at the same time as the opening. For this pur-
pose, the filter driver must itself issue IRPs to the subordi-
nate file systems, as well as communicate with other layers
and modules within the security system. Subordinate re-
quests are usually necessary to read in the object label (if
present) at the end of the file. Based on the object label, the
object is classified within the internal bookkeeping mech-
anisms together with other relevant information regarding
the file (e.g. files or memory maps shared with other pro-
cesses) and further processing can be determined based on
the security policy at the associated driver providing pol-
icy information (e.g. whether transparent en-/decryption on
subsequent read/write requests is required). The informa-
tion on the file stored in this step is referenced in any further
processing of the file since gathering the necessary informa-
tion would – even disregarding performance issues – not be
possible due to restrictions on subordinate IRPs especially
during paging operations.

Another request that must be dealt with is
IRP MJ CLEANUP. This request typically precedes
the closing of a file. In case the object label itself must be
changed or if the size of a file has changed, the new object
label gets written during the processing of this IRP.

The IRP MJ CLOSErequest must also be processed
since the internal bookkeeping data structures associated
with the file must be released.

This information gathering mechanism can be triggered
implicitly by opening files and then querying the filter driver
from the central policy enforcement mechanism; in addi-
tion, explicit functions such as the calculation of signatures

over applications can also be triggered at the kernel level
without interactions with any user level components.

4.5. Selective use of enforcement mechanisms

Even though the enforcement mechanisms are loaded
very early during the boot process, there are some files
in Microsoft Windows NT which must be processed prior
to the driver becoming active (e.g.ntldr.exe , ntde-
tect.com , andpagefile.sys ). This means that such
files must not have an object label and also must not be en-
crypted. However, other processing, such as signature veri-
fication which does not involve intrusive changes to the files
is still possible.

Another file class that may not have an object label and
generally should not be encrypted is paging files. The lat-
ter is mainly due to performance reasons; depending on the
threat model it might be acceptable to wipe the paging files
on each — orderly — system shutdown.

In addition, the security policy might dictate that certain
files, directories, or even entire volumes (volumes are a sub-
case of directories) are not subjected to labeling and encryp-
tion.

For this exclusion mechanism to work, the full names of
the files must be kept at hand; since the Microsoft Windows
NT stores the device identity separately from the path and in
a different format inside the file object, the filter driver must
maintain a translation table to minimize overhead during
lookup comparisons.

An additional complication arises in conjunction with re-
movable media; simply querying the root directory with-
out a medium being present would result in an error con-
dition. Instead, we resorted to an undocumented function
for querying the properties of symbolic links; this works
since the “drive letters” in Microsoft Windows NT are im-
plemented as symbolic links.

5. Related Work

Early work on segregating policy decisions from en-
forcement was performed at UCLA [17] and also in the
LOCK project [11]. The DTOS project also dealt with this
concept [7] based on a Mach microkernel architecture.

Using an encrypted file system is a transparent mecha-
nism for enforcing a security policy regardless of who has
access to the physical file system that does not place an un-
due burden on users. This has been recognized and both re-
search [1, 6, 20] and commercial (e.g. Microsoft EFS, Soft-
Winter SeNTry) implementations have resulted. However,
the goal pursued by all of these implementations was mainly
to provide individual users (or at best small groups of users)
a more convenient mechanism for encrypting their personal
data and protecting it from other users.



Another alternative, mainly pursued by commercial ven-
dors, is to encrypt entire media regardless of file systems.
While this provides protection against theft of storage me-
dia, the main drawbacks are limited compatibility and a
lack of support for storage accessed via interfaces not in-
tercepted by such mechanisms (e.g. network file systems).

An example of a pass-through filter driver for monitor-
ing file system activity on Microsoft Windows NT 4.0 was
described in [9]; some third-party information on the work-
ings of file system drivers and file system filter drivers is
found in [8].

6. Conclusions and Future Work

We have presented a mechanism for enforcing security
policy at the file system level retrofitted onto the Microsoft
Windows NT family of operating systems. It enables the
enforcement of a security policy without requiring modi-
fications to applications and only limited changes in user
behavior. The mechanism was developed without requiring
access to the sources or modifications of the host operating
system.

While this mechanism can be used for file system en-
cryption and access control by itself, it becomes fully oper-
ational only when tightly integrated with other security pol-
icy enforcement components and a mechanism for ensuring
consistent enforcement throughout a distributed system.

To enable the use of the system in a heterogeneous en-
vironment we are also developing the enforcement mecha-
nisms for other operating system platforms, with Unix Sys-
tem V Release 4 derived platforms (Sun Solaris, SGI IRIX)
as the lead system.

Our future work will be directed primarily at tight in-
tegration of the individual policy enforcement modules as
well as on providing scalability to ensure that the system
can be deployed in very large (> 100,000 nodes) networks.

An additional topic of research currently under way is
the realization of a policy mechanims of sufficient expres-
siveness to model even complex security models and spe-
cific requirements.

References

[1] M. Blaze. A Cryptographic File System for Unix. Technical
report, AT&T Bell Labs, Nov. 1993.

[2] T. Fraser, L. Badger, and M. Feldman. Hardening COTS
Software with Generic Software Wrappers. InProceedings
of the 1999 Conference on Security and Privacy (S & P ’99),
pages 2–16, Los Alamitos, CA, May 9–12 1999. IEEE Press.

[3] R. Goldenberg and S. Saravanan.Open VMS AXP Internals
and Data Structures: Version 1.5. Digital Press, Maynard,
MA, USA, 1994.

[4] B. Goodheart and J. Cox.The Magic Garden Explained:
The Internals of Unix System V Release 4. Prentice Hall,
Englewood Cliffs, NJ, USA, 1994.

[5] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Tay-
lor, S. J. Turner, and J. F. Farrell. The Inevitability of Failure:
The Flawed Assumption of Security in Modern Computing
Environments. InProceedings of the 21st National Informa-
tion Systems Security Conference, Crystal City, VA, pages
303–314, Oct. 1998.

[6] E. Mauriello. TCFS: Transparent Cryptographic File Sys-
tem. Linux Journal, 40, Aug. 1997.

[7] S. E. Minear. Providing policy control over object oper-
ations in a Mach based system. In USENIX, editor,5th
USENIX UNIX Security Symposium, June 5–7, 1995. Salt
Lake City, UT, pages 141–155, Berkeley, CA, USA, June
1995. USENIX.

[8] R. Nagar.Windows NT File System Internals: A Developer’s
Guide. O’Reilly & Associates, Sebastopol, CA, USA, 1997.

[9] M. Russinovich and B. Cogswell. Examining the Win-
dows NT Filesystem.Dr. Dobb’s Journal of Software Tools,
22(2):42–50, Feb. 1997.

[10] O. S. Saydjari, J. M. Beckman, and J. R. Leaman. Locking
Computers Securely. InProc. 10th NIST-NCSC National
Computer Security Conference, pages 129–141, 1987.

[11] O. S. Saydjari, J. M. Beckman, and J. R. Leaman. LOCK
trek: Navigating uncharted space. InProc. IEEE Symposium
on Security and Privacy, pages 167–175, 1989.

[12] O. S. Saydjari, S. J. Turner, D. E. Peele, J. F. Farrell, P. A.
Loscocco, W. Kutz, and G. L. Bock. Synergy: A dis-
tributed, microkernel-based security architecture. Technical
Report version 1.0, National Security Agency, Ft. George G.
Meade, MD, Nov. 1993.

[13] E. J. Sebes. Overview of the architecture of Distributed
Trusted Mach. In USENIX, editor,Proceedings of the
USENIX Mach Symposium: November 20–22, 1991, Mon-
terey, California, USA, pages 251–262, Berkeley, CA, USA,
1991. USENIX Association.

[14] D. Solomon.Inside Windows NT. Microsoft Press, Bellevue,
WA, USA, 2nd edition, 1998.

[15] D. Solomon and M. Russinovich.Inside Windows 2000. Mi-
crosoft Press, Bellevue, WA, USA, 3rd edition, 2000.

[16] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ander-
sen, and J. Lepreau. The Flask security architecture: System
support for diverse security policies. In8th USENIX Secu-
rity Symposium, pages 123–139, Washington, D.C., USA,
Aug. 1999. USENIX.

[17] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specifica-
tion and Verification of the UCLA Unix Security Kernel. In
Proceedings of the 7th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 64–65, 1979.

[18] S. Wolthusen. Enforcing Security Policies using Externally
Controlled Reference Monitors. Submitted for publication.

[19] S. Wolthusen. Layered multipoint network defense and se-
curity policy enforcement. InProceedings from the Sec-
ond Annual IEEE SMC Information Assurance Workshop,
United States Military Academy, West Point, NY, pages 100–
108, June 2001.



[20] E. Zadok, I. Badulescu, and A. Shender. Extending File Sys-
tems Using Stackable Templates. InProceedings of the 1999
USENIX Annual Technical Conference (USENIX-99), pages
57–70, Berkeley, CA, June 6–11 1999. USENIX Associa-
tion.


