

Netzwerksicherheit Zuverlässigkeit und Skalierbarkeit

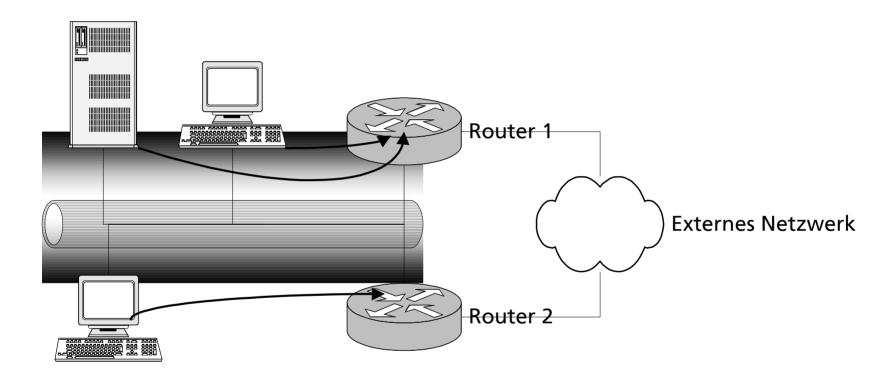
Stephen Wolthusen

- Zur Einschränkung von Möglichkeiten zur Kompromittierung müssen präzise definierte und kontrollierte Übergangspunkte zwischen Bereichen unterschiedlicher Sicherheit definiert werden
 - □ Wird als "choke point" bezeichnet
- Dieselbe Konstruktion wird aus Sicht der Zuverlässigkeit anders bezeichnet: "single point of failure"
- Ähnliche Probleme sind auch bei Skalierbarkeit gegeben
 - □ Einzelne Komponenten haben begrenzte Leistungsfähigkeit, Kosten steigen unverhältnismäßig
 - Mehrere Komponenten müssen parallel betrieben werden

Redundanz von Netzwerk-Komponenten

- Sicherheitsverlust bei Redundanz
 - Aktivitätsmuster sind über mehrere Knoten verteilt
 - erfordert Konsolidierung von Revisionsdaten
 - ▲ Eindeutige Sequenzierung meist nicht möglich
 - Vergleichbarkeit erfordert äquivalente Konfiguration
 - Sicherheit darf nicht nur auf Kontrolle von Informationsflüssen beschränkt betrachtet werden: Verfügbarkeit
- Verfügbarkeit rechtfertigt in der Regel Reduktionen in anderen Sicherheitsparametern

Virtual Router Redundancy Protocol (VRRP)


- Die VRRP-IETF-Arbeitsgruppe wurde im Juni 1997 gegründet
- Ziel: Definition eines Protokolls, mit dem mehrere Router zu einem virtuellen Router zusammengefaßt werden können. Router wird mit virtueller Adresse (IPv4, IPv6) angesprochen
 - Rekonfiguration von Endgeräten erfordert bei statischer Konfiguration manuelle Änderung bei Router-Ausfall
 - DHCP besitzt keine Authentisierungsmechanismen, IRDP erlaubt Angreifer sich als neuer Default Router auszugeben
 - □ IRDP läßt zwischen Updates mehrere Minuten verstreichen
 - Trotz redundantem Router Ausfall bis Konvergenz

Redundante Router ohne Umleitung

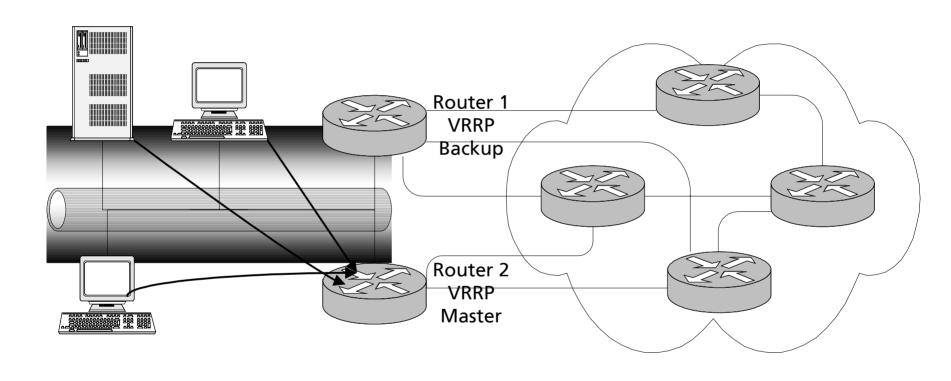
- ARP-Einträge werden von den meisten Implementierungen in Caches gehalten (Windows 2000/XP: 2 Minuten, Solaris 8/9: 5 min im ARP-Cache, 20 min Abbildung IP/MAC)
 - □ Einfache Übernahme der IP-Adresse genügt daher nicht
 - ARP verfügt ebenfalls über keine Authentisierung
 - Verlängerung der ARP-Lebensdauer oder statische ARP-Einträge zur Verhinderung von Spoofing
 - Statische ARP-Adressen erfordern Mechanismus zur Übernahme von IPund ARP-Adressen
 - ▲ wird von VRRP bereitgestellt

- "Master", "Backup"-Knoten
 - Gruppe wird durch Virtual Router ID identifiziert
 - Master wird aus Menge verfügbarer Knoten gewählt
 - Prioritäten können Wahl beeinflussen
- Kommunikation der VRRP-Knoten untereinander mit Multicast-Datagrammen auf 224.0.0.18 (link local) mit TTL 255 und eigenem IP-Protokoll (112)
 - Stellen sicher, daß selbst bei Fehlkonfiguration VRRP-Datagramme nicht über die Grenzen eines lokalen Netzwerkes hinaus verbreitet werden können

Inhalt der VRRP-Datagramme

- Version: 4 Bit; aktuell (RFC2338) ist Version 2
- Type: 4 Bit, Typ der Nachricht. Nur ADVERTISEMENT ist definiert
- VRID: 8 Bit, identifiziert Router-Gruppe. In einem LAN eindeutig
- Priority: 8 Bit, Master=255, Rest von 1-254; 0= Master gibt auf
- Count IP: 8 Bit, Anzahl IP-Adressen in Nachricht
- Auth Type: 8 Bit, Authentisierungsmechanismus (keine, Paßwort, IPSec)
- Advert Interval: 8 Bit, Meldungsintervall in Sekunden (normal 1)
- Checksum: 16 Bit, nach RFC 1071
- IP Addresses: 32 x n Bit, Adressen des virtuellen Routers
- Auth Data: 32 x n Bit, Abhängig von Auth Type

- Nur Master reagiert auf ARP-Anfragen
 - MAC wird aus IANA-OUI-Pool vergeben: Max. 255 VRIDs
- Neuwahl wenn Advertisement mit Priority=0 oder bei fehlendem Advertisement
 - Jeder Router hat Skew Time, abhängig von Priorität
- Authentisierung via Paßwort (Klartext): 8 Bytes
- Authentisierung via IPSec: Statische SA, SPI für HMAC MD5 nach RFC2403 ist vorgegeben
- ARP Spoofing kann eliminiert werden: statische Zuordnung

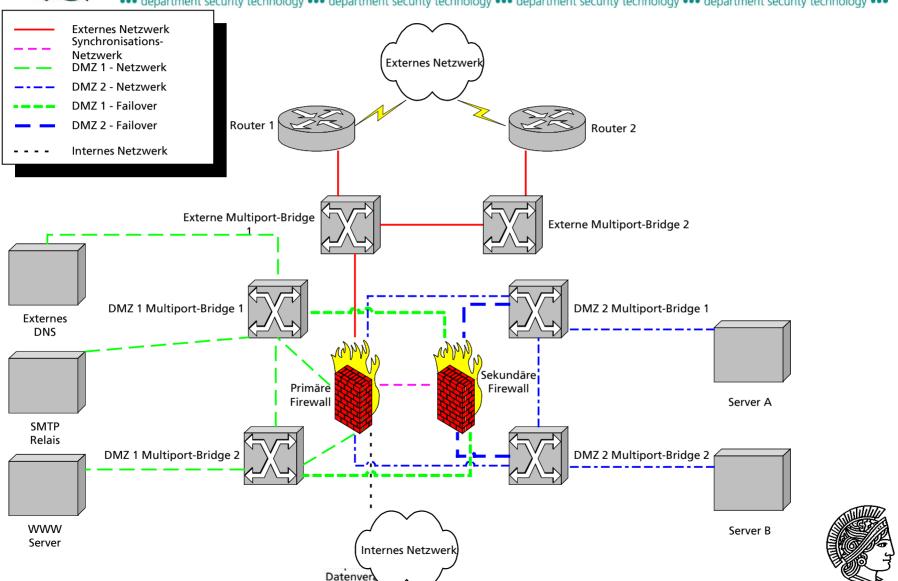

Graphische Datenverarbeitung

Fraunhofer Institut

Redundante Router mit VRRP

Hot Standby Router Protocol (HSRP)

- Proprietäres Protokoll von Cisco, im Dezember 1997 mit IOS 11.3 eingeführt, im März 1998 als informativer RFC 2281 eingereicht
- Funktionen analog zu VRRP
 - Multicast-Kommunikation auf Adresse 224.0.0.2
 - MACs entstammen dem Cisco OUI (00-00-0C-07-AC)
 - Erlaubt ebenfalls maximal 255 Standby Groups je LAN
 - Verwendet UDP anstelle eines eigenen Protokolls
 - Authentisierung erfolgt maximal über Klartext-Paßworte
 - ▲ Default-Paßwort "cisco" wird selten geändert...


- Verfügbarkeit redundanter Hardware, Software die mit gleichem Netz verbunden ist und in der Lage ist, sämtlichen Datenverkehr bei Versagen eines Knoten auf anderen Knoten umzustellen
 - meist auf zwei Knoten beschränkt
 - virtuelle MAC-, IP-Adressen
- Synchronisation erfolgt meist über "Heartbeat"-Netzwerk
 - Zustandsinformationen können umfangreich sein, müssen aber vollständig übertragen werden: Gefahr bei Fehlern
 - Zustandsinformationen sind sicherheitsrelevant

Hot Standby mit Failover

Failover / Hot Standby (2)

••• department security technology ••• department security technology ••• department security technology •••

 Versagenserkennung ist auch bei exotischen Fehlern (z.B. eigene Failover-Schnittstelle) notwendig: "Byzantine Generals Problem"

Vorteile:

- □ Einfach zu implementieren, kommerzielle und freie Lösungen existieren
- Redundanz der Firewall-Infrastruktur ist gewährleistet
- Weitere Kriterien (neben Aktivität) können bei Übernahme berücksichtigt werden
- Wartungsarbeiten können ohne Unterbrechung der Dienste für Nutzer erfolgen

Nachteile von Failover-Mechanismen

- Kein Geschwindigkeitsgewinn, in pathologischen Situationen sogar Verlangsamung durch Synchronisationsmechanismen
- □ Sekundäre Einheit muß identisch zu primärer Einheit sein
 - Wartungskosten
- □ Übernahme langlebiger Verbindungen (z.B. FTP-Datentransfers) ist nicht bei allen Implementierungen möglich

Lastausgleich: DNS Round Robin

- Seit BIND 4.9 bzw. NT 4.0 SP 4 verfügbarer
 Mechanismus
- Bei Verfügbarkeit mehrerer IP-Adressen für einen symbolischen Namen wird sequentiell bei jeder neuen Anforderung ein anderer Eintrag als DNS-Antwort geliefert. Nachteile:
 - Keine echte Lastverteilung
 - DNS-Antworten werden von Clients in Caches gehalten
 - □ Authentisierung von Adressen ist nicht gewährleistet
 - Einträge ausgefallener Knoten bleiben in Caches auf Client und Tabellen der Server zurück, transparenter Failover nicht möglich

Probleme bei Verwendung von RIP für Lastausgleich

- Einfaches, seit Jahren bewährtes Protokoll
- Für Lastausgleich nicht geeignet. Einige Nachteile:
 - Verzögerungen, Kosten für einzelne Verbindungen werden von RIP nicht berücksichtigt: Nur Anzahl Hops
 - Konvergenz der Routen ist langsam insbesondere bei großen Netzwerken
 - RIP kann VLSM nicht verarbeiten
 - □ Periodische Versendung der gesamten Routing-Tabelle als Broadcast
 - Maximal 15 Hops in einem Netzwerk

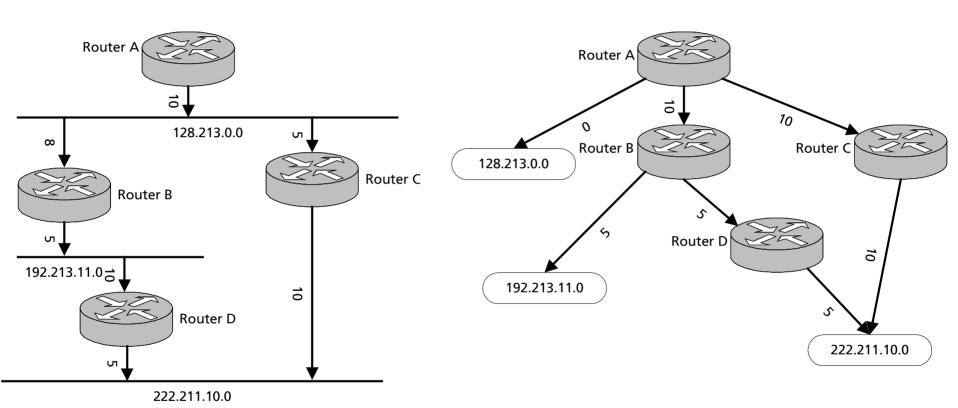
Open Shortest Path First (OSPF)

- Routing-Protokoll für interne Netzwerke (IGP), von der IETF wurde 1988 Arbeitsgruppe gegründet, erste Version 1991
 - □ derzeit aktuell ist Version 2, 1998 in RFC 2328 definiert
- Anders als RIP (basiert auf Bellman-Ford-Algorithmus) beruht OSPF auf Gewichtung von Verbindungen. Weitere Vorteile
 - Rudimentäre Authentisierung
 - Unterstützung von VLSM
 - Aggregierung von Routen

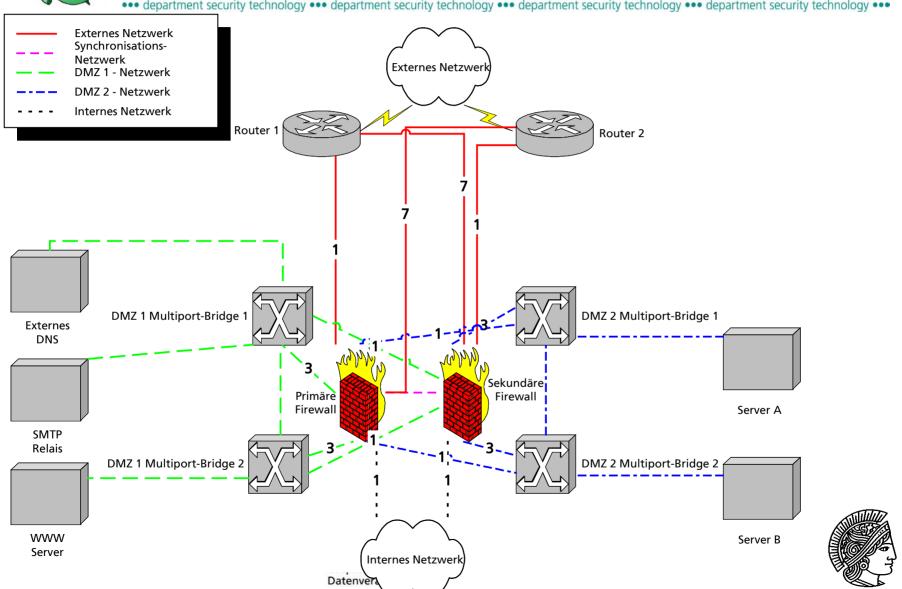
Verbindungszustand wird via IP Multicasting übertragen

- Pakete können mit IPSec gesichert werden
- Zustandsübermittlung erfolgt nur bei Veränderung in relevante
 Zuständen
 - Ansonsten versendet OSPFs periodisch nur Nachrichten konstanter Größe
- Konvergenz ist schnell, Zustände werden sofort aktualisiert
- Gewichtung von Verbindungen erlaubt effizienten Lastausgleich
- OSPF erlaubt mehrere Authentisierungsmechanismen

Link State Algorithmus in OSPF


- 1. Nach Initialisierung oder Änderung oder Zustandsänderung wird ein Link State Advertisement erzeugt (mit allen Link States)
- 2. Alle Knoten tauschen jeweilige Link States durch Flutungs-Verfahren aus. Jeder Knoten, der ein LSU erhält muß diesen in eigene Link State Database eintragen und an alle erreichbaren Knoten weiterleiten
- 3. Nachdem die Datenbank jedes Routers vollständig ist berechnet jeder Router einen Baum, der die günstigsten Wege für alle Zielknoten enthält
- Ergebnis: Tabelle mit nächstem Hop, Kosten für Verbindung

Berechnung kürzester Wege in OSPF: Dijkstra-Algorithmus


- Metriken ("Kosten") sind Maß für relativen Aufwand,
 Datagramme über eine Schnittstelle zu verwenden
 - Meist nur Bandbreite als Grundlage
- Metriken können "mißbraucht" werden:
 - Einbeziehen von Prozessorlast, kryptographischer Coprozessoren,
 Speicherauslastung von Firewalls
- Kosten für Flutung sind durch Beschränkung auf Areas begrenzt
 - Router werden zu Regionen zusammengefaßt
 - Nur an Übergängen von Regionen werden Routen übergeben

Lastausgleich mit OSPF

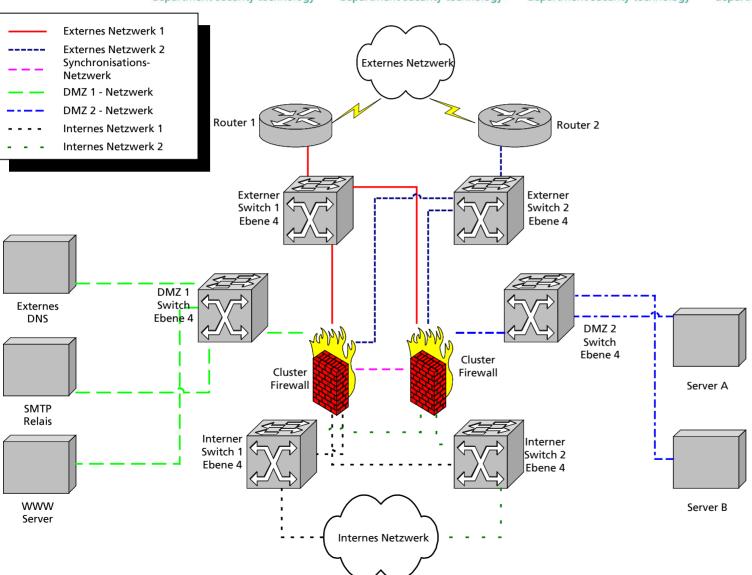
Vorteile von OSPF für Lastausgleich

- Gegenüber Failover-Lösung ist bei gleichem Hardware-Aufwand zusätzlich Lastverteilung möglich
- Es können problemlos mehr als nur 2 Knoten verknüpft werden
- Metriken und Verhalten der Lastbalancierung k\u00f6nnen pr\u00e4zise gesteuert werden
- Notwendige Komponenten sind meist in Betriebssystemen von Servern und in Routern verfügbar
- Wartung und Konfiguration einzelner Knoten beeinträchtigt nicht die Bereitstellung von Diensten

Nachteile von OSPF für Lastausgleich

- Lastausgleich erfolgt nur verzögert, spiegelt nicht exakt die Verteilung wider
- Konfiguration ist nicht ganz trivial
- Übernahme langlebiger Zustandsinformationen für Verbindungen wie IPSec-SAs sind nicht immer möglich
- Viele kommerzielle Firewalls unterstützen OSPF nicht
 - Nachrüstung meist nicht machbar
- Komplexe Protokolle wie OSPF sind immer Gefahrenquelle
- Zusätzlich wird Verfahren für ARP/IP-Failover benötigt

Hardware-basierter Lastausgleich


- Feinkörnige Lastbalancierung ist mittels Layer 4-Switches und einer Gruppe von Firewalls mit internem Lastausgleich möglich
 - Firewall wird gegenüber Endknoten isoliert
 - Eliminiert die Notwendigkeit von virtuellen IP-Adressen
 - Lastbalancierung durch Switches ist nur aufgrund von Verkehrsmustern möglich: Rest müssen Firewalls untereinander ausgleichen

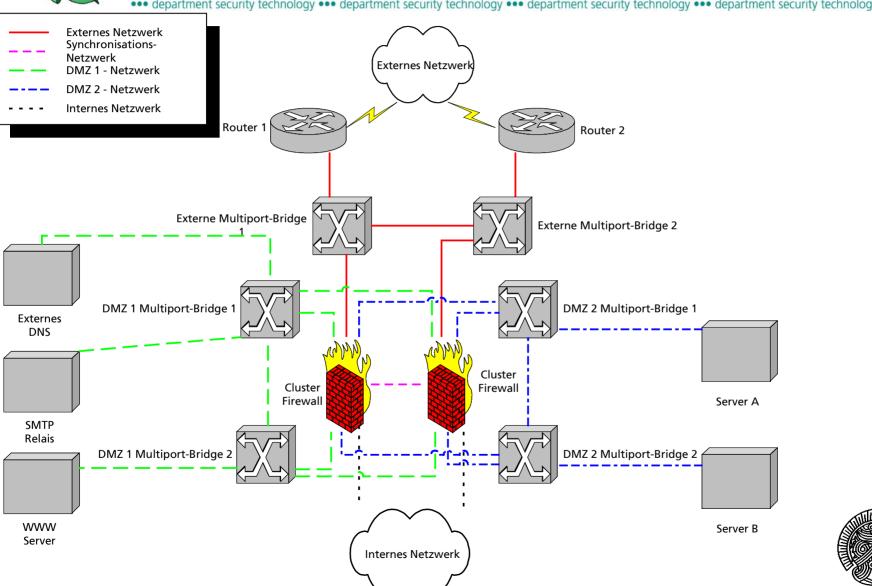
Hardware-basierter Lastausgleich

Vorteile Hardware-basierter Lastausgleich

- Lastbalancierung erfolgt innerhalb des angeschlossenen
 Netzwerkes und zwischen Knoten des Firewall-Clusters
 - Deutliche Leistungssteigerung gegenüber Failover-Lösung
- Last wird n\u00e4herungsweise gleich auf alle Knoten des Firewall-Clusters verteilt
- Skalierbarkeit ist sehr gut
 - Firewall-Cluster kann beliebig vergrößert werden, dies bleibt für Endknoten unsichtbar
- Wartung und Konfiguration einzelner Firewall (!)-Knoten beeinträchtigt nicht die Bereitstellung von Diensten

Nachteile Hardware-basierter Lastausgleich

- Kommunikationskanal zwischen Ebene 4-Switches erforderlich zwischen internen und externen, externen und DMZ-Netzen
 - Potentieller Angriffspunkt
- Wenn NAT durchgeführt wird, muß dies auf Ebene der Switches durchgeführt werden
 - Erfassung von Revisionsdaten wird erschwert
- Übernahme langlebiger Verbindungen kaum möglich
- Lastausgleich orientiert sich nur an Netzwerkauslastung
- Kosten sind durch Einsatz von Ebene 4-Switches erheblich


- Sowohl nachträglich aufrüstbar (z.B. Rainfinity) als auch bereits in Betriebssystemen von Grund auf vorhanden (z.B. OpenVMS)
- Entscheidungsmechanismen für Lastbalancierung können auf Knoten des Clusters selbst aufsetzen
 - □ Ermöglicht komplexe Metriken, Migration langlebiger Verbindungen
- Implementierungsvarianten:
 - □ Virtuelle IP-/MAC-Adressen ("Cluster Alias")
 - Dynamische "floating" IP-Adressen

Clustering

Vorteile von Clustering für Lastbalancierung

- Hardware-Konfiguration und Fähigkeiten der einzelnen Knoten müssen nicht identisch sein
- Volle Cluster-Systeme stellen konsistene Sicht der Systemsoftware und Dateisysteme bereit:
 - Ermöglichen z.B. "rolling updates" von Betriebssystem, Firewall-Software
- Skalierbarkeit und Qualität der Lastbalancierung ist hervorragend
- Metriken sind deutlich aussagekräftiger als bei anderen Lösungen
- Problemloser Failover möglich z.B. für Wartungsarbeiten

Nachteile von Clustering für Lastbalancierung

- Konfiguration kann je nach verwendeten Werkzeugen und Systemen komplex sein
 - ☐ Gefahr von neu eingeführten Risiken
- Bei Kombination von nachträglich aufgerüsteter Clustering-Software besteht die Gefahr, daß bei Aktualisierung der Firewall-Software das Clustering Fehler verursacht

Verteilung von Regelwerken

- Konsistente Regelwerke für Datenflüsse, Revisionsdaten,
 Intrusion Detection notwendig
- Unabhängige Konfiguration ist nicht praktikabel
 - Prinzip des schwächsten Gliedes
- Abstraktionsstufe für Regelwerke ist meist zu niedrig
 - Anpassung an für bestimmte Knoten geltende Netzwerksegmente sind meist notwendig, fehleranfällig
- Skalierbarkeit der Verteilungsmechanismen
 - Import von Regelwerken kann mehrere Minuten dauern während dem Verkehr für Knoten unterbrochen wird

- Sicherheitssysteme sind reaktiv, es existiert meist ein Zeitfenster zwischen Erkennung und Abwehrmöglichkeiten für Bedrohungen
- Frage nach Zusicherung des Funktionsumfangs und der Vertrauenswürdigkeit des Firewall-Systems
 - Vollständigkeit der Spezifikation
 - Abdeckung der funktionalen Anforderungen
 - Qualität der Implementierung
 - Analyse auf funktionale Subkomponenten

Problemkreise für Zuverlässigkeit und Vertrauenswürdigkeit

••• department security technology ••• department security technology ••• department security technology •••

Risikoanalyse

Bedrohungen müssen vollständig erfaßt sein, neue Bedrohungen,
 Schwachstellen durch Schutzmechanismen

Spezifikation

 Hinreichende funktionale Spezifikation für alle sicherheitsrelevanten Systeme und Subsysteme

Implementierung

Korrektheit, Vollständigkeit, Konfiguration nach Spezifikation

Verifikation und Validierung

Korrespondenz zwischen identifizierten Risiken, Gegenmaßnahmen

Zuverlässige Software ist machbar

- Kritische Systeme (Avionik, Raumfahrt, Reaktortechnik)
 wenden seit langem standardisierte Entwicklungsverfahren an,
 die ein hohes Maß an Zuverlässigkeit ermöglichen
 - □ IEEE 730, 829, 830, 1002, 1008, 1012...
 - □ Entsprechendes von IAEA, FAA, diverse MIL-STDs
- Semiformale Entwicklungstechniken erlauben Spezifikation mit mathematischen Mitteln, Korrespondenz zwischen Implementierung und Spezifikation muß jedoch von Hand demonstriert werden; Verifikation und Programmbeweise
 - □ Z, Object-Z, VDM, PVS, HDM, Gypsy/GVE,...

Vertrauenswürdigkeit: TCSEC

- Trusted Computer System Evaluation Criteria: Erster Standard 1985 für DoD-Computersysteme
 - vermengt Anforderungen an Funktionalität und Vertrauenswürdigkeit
 - Unterteilt Vertrauenswürdigkeit in vier Abteilungen
 - ▲ D: Evaluierung auf höherer Stufe fehlgeschlagen
 - ▲ C: Discretionary Security Protection / Discretionary Access Control
 - ▲ B: Labeled Security Protection, Structured Protection
 - ▲ A: Verified Design

TCSEC und weitere Kriterien

- TCSEC zielte auf isolierte Systeme ab, die "Network Interpretation" brachte hier nur partiell Besserung
- Deutsche Bestrebungen: ITSK (1989)
 - Unterteilung der Sicherheitsfunktionalität in abstrakte Gruppen von Funktionen
 - Auftrennung der Kriterien in Funktionskriterien und Qualitätskriterien
 - Vordefinierte Funktionsklassen sind aus TCSEC abgeleitet
 - ▲ 10 Funktionsklassen F1...F10
 - ▲ 8 Qualitätsstufen Q0...Q8

- Nationale Kriterien sind in Europa unwirtschaftlich, da der angesprochene Markt zu klein ist
- Harmonisierungsbestrebungen: Die ITSEC wurden von Deutschland, Frankreich, dem UK und der Niederlande entwickelt. Letzte gültige Fassung: Version 1.2 (1991)
 - □ Aufteilung in Funktionalität, Vertrauenswürdigkeit (E0-E6) analog ITSK
 - □ Abwärtskompatibilität zu TCSEC in Funktionsklassen (z.B. F-C2)
 - Neu: Erweiterbare Funktionsklassen
 - □ Wechselseitige Anerkennung seit 1998, weitere Staaten

- ISO-Arbeitsgruppe seit 1990, parallel Harmonisierungsbestrebungen zwischen USA (FC) und Kanada (CTCPEC) 1993
 - Entscheidung zur weltweiten Harmonisierung
 - 1996 wurde Version 1.0 der CC veröffentlicht
 - □ CC 2.1 wurden im August 1999 als ISO 15408 zum Standard
 - Besteht aus drei Teilen
 - ▲ Einführung, Vorstellung des Modells, Evaluierungskonzepte
 - Katalog funktionaler Anforderungen
 - ▲ Katalog der Anforderungen an Vertrauenswürdigkeit

Vertrauenswürdigkeit in CC (1)

- 7 Stufen: Evaluation Assurance Levels
- EAL1: Funktionell getestet
 - Prüfung und Bewertung von Endprodukten, unabhängige Tests anhand Spezifikation und Prüfung der Dokumentation. Soll ohne Hilfe des Herstellers ausführbar sein
- EAL2: Strukturell getestet
 - Erfordert Kooperation der Entwickler; Lieferung von Entwurfsinformationen, Testergebnissen. Soll bei Produkten die mit sauberer Ingenieurstechnik entwickelt werden kaum Mehraufwand bewirken

Vertrauenswürdigkeit in CC (2)

- EAL3: Methodisch getestet und überprüft
 - Erfordert gewissenhafte Entwickler, positive Sicherheitsmaßnahmen, jedoch keine signifikante Änderung an bestehenden Entwicklungstechniken erforderlich
- EAL4: Methodisch entwickelt, getestet und durchgesehen
 - Scharfe Entwicklungsregeln, jedoch keine tiefgreifende Spezialkenntnisse seitens Entwickler erforderlich. Die höchste Stufe auf der Nachrüstung praktikabel ist
- EAL5: Semiformal entworfen und getestet
 - Begrenzter Einsatz von Spezialtechniken, muß eigens für EAL5 entwickelt werden

Vertrauenswürdigkeit in CC (3)

••• department security technology ••• department security technology ••• department security technology •••

EAL6: Semiformal verifizierter Entwurf, getestet

 Erfordert zusätzlich streng kontrollierte Entwicklungsumgebung, für Einsatz in Situationen mit hohem Risiko, bei dem signifikante Zusatzkosten gerecht-fertigt sind

EAL7: Formal verifizierter Entwurf, getestet

□ Einsatzgebiete mit extrem hohem Risiko. Derzeit aufgrund der geringen Skalierbarkeit formaler Techniken nur auf Systeme mit extrem geringer Funktionalität anwendbar

Protection Profiles und Security Targets

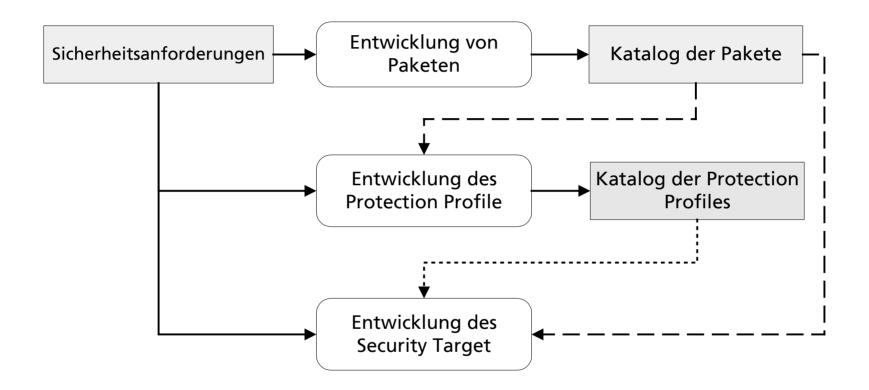
••• department security technology ••• department security technology ••• department security technology •••

Protection Profile

- Menge von Sicherheitsanforderungen, entweder direkt aus CC abgeleitet oder anwendungsspezifisch (explizit)
- Soll EAL enthalten
- Wiederverwendbar für mehrere Implementierungen

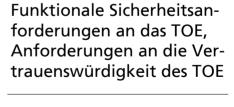
Security Target

- Menge von Sicherheitsanforderungen entweder direkt oder in Bezug auf PP
- Anforderungen an konkretem Target of Evaluation (TOE)


Herleitung von Anforderungen und Spezifikation

Ableitung von PP und ST aus Sicherheitsanforderungen

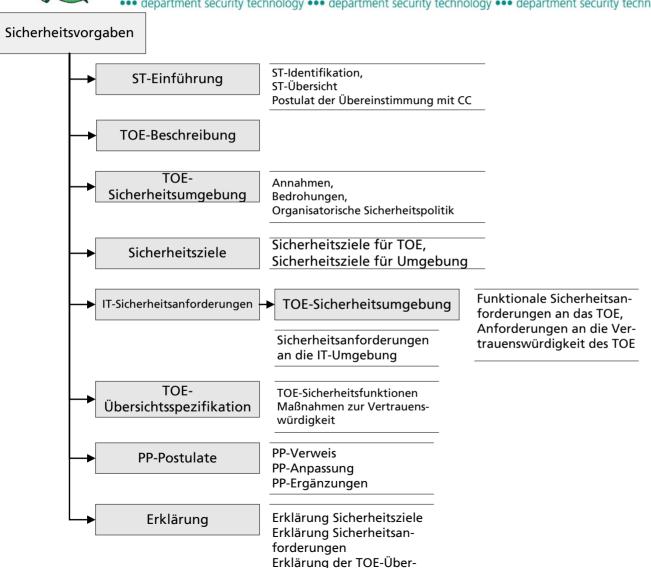




Inhalt des PP

••• department security technology ••• department security technology ••• department security technology •••

Sicherheitsanforderungen



Inhalt des ST

••• department security technology ••• department security technology ••• department security technology •••

sichtsspezifikation

Erklärung der PP-Postulate

